如何選擇用于熱插拔的MOSFET?當電源與其負載突然斷開時,電路寄生電感元件上的大電流擺動會產生巨大的尖峰電壓,對電路上的電子元件造成十分不利的影響。與電池保護應用類似,此處MOSFET可以將輸入電源與其他電路隔離開來。但此時,FET的作用并不是立即斷開輸入與輸出之間的連接,而是減輕那些具有破壞力的浪涌電流帶來的嚴重后果。這需要通過一個控制器來調節輸入電壓(VIN)和輸出電壓(VOUT)之間MOSFET上的柵源偏壓,使MOSFET處于飽和狀態,從而阻止可能通過的電流。在一般分布式MOSFET元件中,通常把基極和源極接在一起,故分布式MOSFET通常為三端元件。杭州MOSFET設計
DMOS是雙重擴散MOSFET(double-Diffused MOSFET)的縮寫,它主要用于高壓,屬于高壓MOS管范疇。以MOSFET實現模擬開關:MOSFET在導通時的通道電阻低,而截止時的電阻近乎無限大,所以適合作為模擬信號的開關(信號的能量不會因為開關的電阻而損失太多)。MOSFET作為開關時,其源極與漏極的分別和其他的應用是不太相同的,因為信號可以從MOSFET柵極以外的任一端進出。對NMOS開關而言,電壓負的一端就是源極,PMOS則正好相反,電壓正的一端是源極。MOSFET開關能傳輸的信號會受到其柵極—源極、柵極—漏極,以及漏極到源極的電壓限制,如果超過了電壓的上限可能會導致MOSFET燒毀。MOSFET開關的應用范圍很廣,舉凡需要用到取樣持有電路(sample-and-hold circuits)或是截波電路(chopper circuits)的設計,例如類比數位轉換器(A/D converter)或是切換電容濾波器(switch-capacitor filter)上都可以見到MOSFET開關的蹤影。太倉低壓N管MOSFET廠家數字電路對MOSFET的幫助:使得MOSFET操作速度越來越快,成為各種半導體主動元件中較快的一種。
不過反過來說,也有些電路設計會因為MOSFET的次臨限傳導得到好處,例如需要較高的轉導/電流轉換比(transconductance-to-current ratio)的電路里,利用次臨限傳導的MOSFET來達成目的的設計也頗為常見。芯片內部連接導線的寄生電容效應傳統上,CMOS邏輯門的切換速度與其元件的柵極電容有關。但是當柵極電容隨著MOSFET尺寸變小而減少,同樣大小的芯片上可容納更多晶體管時,連接這些晶體管的金屬導線間產生的寄生電容效應就開始主宰邏輯門的切換速度。如何減少這些寄生電容,成了芯片效率能否向上突破的關鍵之一。芯片發熱量增加當芯片上的晶體管數量大幅增加后,有一個無法避免的問題也跟著發生了,那就是芯片的發熱量也大幅增加。一般的集成電路元件在高溫下操作可能會導致切換速度受到影響,或是導致可靠度與壽命的問題。在一些發熱量非常高的集成電路芯片如微處理器,需要使用外加的散熱系統來緩和這個問題。
理論上MOSFET的柵極應該盡可能選擇電性良好的導體,多晶硅在經過重(讀作zhong)摻雜之后的導電性可以用在MOSFET的柵極上,但是并非完美的選擇。MOSFET使用多晶硅作為的理由如下: MOSFET的臨界電壓(threshold voltage)主要由柵極與通道材料的功函數(work function)之間的差異來決定,而因為多晶硅本質上是半導體,所以可以藉由摻雜不同極性的雜質來改變其功函數。更重要的是,因為多晶硅和底下作為通道的硅之間能隙(bandgap)相同,因此在降低PMOS或是NMOS的臨界電壓時可以藉由直接調整多晶硅的功函數來達成需求。反過來說,金屬材料的功函數并不像半導體那么易于改變,如此一來要降低MOSFET的臨界電壓就變得比較困難。而且如果想要同時降低PMOS和NMOS的臨界電壓,將需要兩種不同的金屬分別做其柵極材料,對于制程又是一個很大的變量。多晶硅的融點比大多數的金屬高,而在現代的半導體制程中習慣在高溫下沉積柵極材料以增進元件效能。金屬的融點低,將會影響制程所能使用的溫度上限。在集成電路中的MOSFET通常因為使用同一個基極(common bulk),所以不標示出基極的極性。
常見的N溝道增強型MOSFET的基本結構圖。為了改善某些參數的特性,如提高工作電流、提高工作電壓、降低導通電阻、提高開關特性等有不同的結構及工藝,構成所謂VMOS、DMOS、TMOS等結構。雖然有不同的結構,但其工作原理是相同的,這里就不一一介紹了。要使增強型N溝道MOSFET工作,要在G、S之間加正電壓VGS及在D、S之間加正電壓VDS,則產生正向工作電流ID。改變VGS的電壓可控制工作電流ID。若先不接VGS(即VGS=0),在D與S極之間加一正電壓VDS,漏極D與襯底之間的PN結處于反向,因此漏源之間不能導電。越來越多模擬信號處理的集成電路可以用MOSFET來實現。廈門MOSFET廠家
若箭頭從基極指向通道,則表示基極為P型,而通道為N型,此元件為N型的MOSFET,簡稱NMOS。杭州MOSFET設計
NPN型的MOSFET是怎么導通的呢?首先,在柵極加正電壓,這樣就會排斥襯底——P型硅中的正電荷,同時吸引負電荷,這樣在漏極與源極之間形成一層負電荷區域,這時再火上澆油在漏極加上正電壓,源極加上負電壓。至于怎么分辨MOSFET的電路符號是N溝道還是P溝道。溝道的正負,就是襯底中通道的正負。電路符號中的箭頭表示的是電子的流向。可以看到N溝道的電路符號中的箭頭是指向柵極的,襯底下堆積的就是一層負電子,而這層負電子從漏極和源極的角度看,就是一條電子從源極通往漏極的溝,所以這個溝就叫做negative溝道,簡稱N溝道。杭州MOSFET設計
上海光宇睿芯微電子有限公司是一家服務型類企業,積極探索行業發展,努力實現產品創新。光宇睿芯微電子是一家私營有限責任公司企業,一直“以人為本,服務于社會”的經營理念;“誠守信譽,持續發展”的質量方針。公司業務涵蓋MOSFET場效應管,ESD保護器件,穩壓管價格,傳感器,價格合理,品質有保證,深受廣大客戶的歡迎。光宇睿芯微電子自成立以來,一直堅持走正規化、專業化路線,得到了廣大客戶及社會各界的普遍認可與大力支持。