常見的MOSFET設計是以一條直線 通道,兩條和通道垂直的線 源極與漏極,左方和通道平行而且較短的線 柵極,如下圖所示。有時也會將 通道的直線以破折線代替,以區分增強型MOSFET(enhancement mode MOSFET)或是耗盡型MOSFET(depletion mode MOSFET)另外又分為NMOSFET和PMOSFET兩種類型,電路符號如圖所示(箭頭的方向不同)。由于集成電路芯片上的MOSFET為四端元件,所以除了柵極、源極、漏極外,尚有一基極(Bulk或是Body)。MOSFET電路符號中,從通道往右延伸的箭號方向則可表示此元件為N型或是P型的MOSFET。箭頭方向永遠從P端指向N端,所以箭頭從通道指向基極端的為P型的MOSFET,或簡稱PMOS( 此元件的通道為P型);反之若箭頭從基極指向通道,則 基極為P型,而通道為N型,此元件為N型的MOSFET,簡稱NMOS。在一般分布式MOSFET元件(discrete device)中,通常把基極和源極接在一起,故分布式MOSFET通常為三端元件。而在集成電路中的MOSFET通常因為使用同一個基極(common bulk),所以不標示出基極的極性,而在PMOS的柵極端多加一個圓圈以示區別(這是國外符號,國標符號見圖)。采用MOSFET實現模擬電路不但可以滿足規格上的需求,還可以有效縮小芯片的面積,降低生產成本。深圳低壓MOSFET技術參數
MOSFET在數字電路上應用的另外一大優勢是對直流(DC)信號而言,MOSFET的柵極端阻抗為無限大(等效于開路),也就是理論上不會有電流從MOSFET的柵極端流向電路里的接地點,而是完全由電壓控制柵極的形式。這讓MOSFET和他們 主要的競爭對手BJT相較之下更為省電,而且也更易于驅動。在CMOS邏輯電路里,除了負責驅動芯片外負載(off-chip load)的驅動器(driver)外,每一級的邏輯門都只要面對同樣是MOSFET的柵極,如此一來較不需考慮邏輯門本身的驅動力。相較之下,BJT的邏輯電路(例如 常見的TTL)就沒有這些優勢。MOSFET的柵極輸入電阻無限大對于電路設計工程師而言亦有其他優點,例如較不需考慮邏輯門輸出端的負載效應(loading effect)。模擬電路蘇州高壓MOSFET晶體管一般集成電路里的MOSFET都是平面式(planar)的結構。
單一MOSFET開關:當NMOS用來做開關時,其基極接地,柵極為控制開關的端點。當柵極電壓減去源極電壓超過其導通的臨界電壓時,此開關的狀態為導通。柵極電壓繼續升高,則NMOS能通過的電流就更大。NMOS做開關時操作在線性區,因為源極與漏極的電壓在開關為導通時會趨向一致。PMOS做開關時,其基極接至電路里電位高的地方,通常是電源。柵極的電壓比源極低、超過其臨界電壓時,PMOS開關會打開。NMOS開關能容許通過的電壓上限為(Vgate-Vthn),而PMOS開關則為(Vgate+Vthp),這個值通常不是信號原本的電壓振幅,也就是說單一MOSFET開關會有讓信號振幅變小、信號失真的缺點。
為何要把MOSFET的尺寸縮小基于以下幾個理由,我們希望MOSFET的尺寸能越小越好。 ,越小的MOSFET象征其通道長度減少,讓通道的等效電阻也減少,可以讓更多電流通過。雖然通道寬度也可能跟著變小而讓通道等效電阻變大,但是如果能降低單位電阻的大小,那么這個問題就可以解決。其次,MOSFET的尺寸變小意味著柵極面積減少,如此可以降低等效的柵極電容。此外,越小的柵極通常會有更薄的柵極氧化層,這可以讓前面提到的通道單位電阻值降低。不過這樣的改變同時會讓柵極電容反而變得較大,但是和減少的通道電阻相比,獲得的好處仍然多過壞處,而MOSFET在尺寸縮小后的切換速度也會因為上面兩個因素加總而變快。第三個理由是MOSFET的面積越小,制造芯片的成本就可以降低,在同樣的封裝里可以裝下更高密度的芯片。一片集成電路制程使用的晶圓尺寸是固定的,所以如果芯片面積越小,同樣大小的晶圓就可以產出更多的芯片,于是成本就變得更低了。微處理器運算效能不斷提升,帶給深入研發新一代MOSFET更多的動力。
柵極氧化層隨著MOSFET尺寸變小而越來越薄,主流的半導體制程中,甚至已經做出厚度 有1.2納米的柵極氧化層,大約等于5個原子疊在一起的厚度而已。在這種尺度下,所有的物理現象都在量子力學所規范的世界內,例如電子的穿隧效應(tunneling effect)。因為穿隧效應,有些電子有機會越過氧化層所形成的位能障壁(potential barrier)而產生漏電流,這也是 集成電路芯片功耗的來源之一。為了解決這個問題,有一些介電常數比二氧化硅更高的物質被用在柵極氧化層中。例如鉿(Hafnium)和鋯(Zirconium)的金屬氧化物(二氧化鉿、二氧化鋯)等高介電常數的物質均能有效降低柵極漏電流。柵極氧化層的介電常數增加后,柵極的厚度便能增加而維持一樣的電容大小。而較厚的柵極氧化層又可以降低電子透過穿隧效應穿過氧化層的機率,進而降低漏電流。不過利用新材料制作的柵極氧化層也必須考慮其位能障壁的高度,因為這些新材料的傳導帶(conduction band)和價帶(valence band)和半導體的傳導帶與價帶的差距比二氧化硅小(二氧化硅的傳導帶和硅之間的高度差約為8ev),所以仍然有可能導致柵極漏電流出現。MOSFET在數字電路上應用的大優勢是對直流(DC)信號而言,MOSFET的柵極端阻抗為無限大。高壓P管MOSFET晶體管
MOSFET的兩種類型通常又稱為NMOSFET與PMOSFET。深圳低壓MOSFET技術參數
MOSFET的 :金屬—氧化層—半導體電容金屬—氧化層—半導體結構MOSFET在結構上以一個金屬—氧化層—半導體的電容為 (如前所述, 的MOSFET多半以多晶硅取代金屬作為其柵極材料),氧化層的材料多半是二氧化硅,其下是作為基極的硅,而其上則是作為柵極的多晶硅。這樣子的結構正好等于一個電容器(capacitor),氧化層扮演電容器中介電質(dielectric material)的角色,而電容值由氧化層的厚度與二氧化硅的介電常數(dielectric constant)來決定。柵極多晶硅與基極的硅則成為MOS電容的兩個端點。深圳低壓MOSFET技術參數
上海光宇睿芯微電子有限公司致力于數碼、電腦,以科技創新實現***管理的追求。光宇睿芯微電子作為上海光宇睿芯微電子有限公司座落于上海浦東張江高科技園區內,是專業從事半導體過電壓保護器件、功率MOSFT頁件、集成電照的設計與銷售的****,是國內掌握半導體過壓保護器件和集成電路設計的供應商之一。公司產品品種多,覆蓋范圍廣,已廣泛應用于通訊系統的接口保護、手機接口保護、掌上數碼產品接口保護、電源系統的過壓保護、鋰電池的BMS和電機驅動。 的企業之一,為客戶提供良好的MOSFET場效應管,ESD保護器件,穩壓管價格,傳感器。光宇睿芯微電子不斷開拓創新,追求出色,以技術為先導,以產品為平臺,以應用為重點,以服務為保證,不斷為客戶創造更高價值,提供更優服務。光宇睿芯微電子始終關注數碼、電腦市場,以敏銳的市場洞察力,實現與客戶的成長共贏。