激光雷達的構成與分類:激光雷達的構成,激光雷達發展到現在,其結構精密且復雜,主要由激光系統、接收系統、信號處理單元和掃描模塊四大主要組件構成。激光器以脈沖的方式點亮發射激光,照射到障礙物后對物體進行3D掃描,反射光線經由鏡頭組匯聚到接收器上。信號處理單元負責控制激光器的發射,并將接收到的模擬信號轉為數字信號,然后進入主控芯片進行數據的處理和計算。進一步的,我們可以根據以下指標判斷激光雷達的好壞。視場角,視場角決定了激光雷達能夠看到的視野范圍,分為水平視場角和垂直視場角,視場角越大,表示視野范圍越大,反之則表示視野范圍越小。激光雷達的輕便設計使其便于攜帶和操作。安徽Hap激光雷達渠道
反射強度,LiDAR 返回的每個數據中,除了根據速度和時間計算出的反射強度其實是指激光點回波功率和發射功率的比值。而激光的反射強度根據現有的光學模型,可以較好的刻畫為以下模型。我們可以看到,激光點的反射率和距離的平方成反比,和物體的入射角成反比。入射角是入射光線與物體表面法線的夾角。時間戳和編碼信息,LiDAR 通常從硬件層面支持授時,即有硬件 trigger 觸發 LiDAR 數據,并支持給這一幀數據打上時間戳。通常會提供支持三種時間同步接口,IEEE 15882008同步,遵循精確時間協議,通過以太網對測量以及系統控制實現精確的時鐘同步。深圳三維激光雷達設備通過分析激光雷達數據,研究人員能夠精確評估環境變化。
視場角與分辨率,激光雷達視場角分為水平視場角和垂直視場角,水平視場角即為在水平方向上可以觀測的角度范圍,旋轉式激光雷達旋轉一周為 360°,所以水平視場角為 360°。垂直視場角為在垂直方向上可以觀測的角度,一般為 40°。而它并不是對稱均勻分布的,因為我們主要是需要掃描路面上的障礙物,而不是把激光打向天空,為了良好的利用激光,因此激光光束會盡量向下偏置一定的角度。并且為了達到既檢測到障礙物,同時把激光束集中到中間感興趣的部分,來更好的檢測車輛,激光雷達的光束不是垂直均勻分布的,而是中間密,兩邊疏。 可以看到激光雷達的有一定的偏置,向上的角度為 15°,向下的為 25°,并且激光光束中間密集,兩邊稀疏。
激光雷達(Lidar)光束范圍很窄,所以需要更多的縱向光束,以覆蓋大的面積,所以線束決定著畫面大小,掃描再通過返回的時間測量距離,并精確、快速構建模型,相比目前的其他雷達強太多,所以更適合自動駕駛系統,但也同樣易受天氣影像,成本較高。轉鏡:轉鏡分為一維轉鏡和二維轉鏡。一維轉鏡通過旋轉的多面體反射鏡,將激光反射到不同的方向;二維轉鏡顧名思義內部集成了兩個轉鏡,一個多邊棱鏡負責橫向旋轉,一個負責縱向翻轉,實現一束激光包攬橫縱雙向掃描。轉鏡激光雷達體積小、成本低,與機械式激光雷達效果一致,但機械頻率也很高,在壽命上不夠理想。在某些領域,激光雷達被用于偵察和目標識別。
關于 FMCW 的原理,可以閱讀本系列的下一篇文章:Yvon Shong:走進自動駕駛傳感器——毫米波雷達。調幅連續波(AMCW)激光雷達與基本的飛行時間系統相似的是,調幅連續波激光雷達發射一個信號,測量激光反射回來的時間。但區別在于,時間飛行系統只發射一個脈沖,調幅連續波 LiDAR 通過改變激光二極管中的極電流來調整發射光強度,從而實現調制。激光雷達應用于測繪主要有測距、定位以及地表物體的三維繪制;其達作為一種重要的傳感器,目前正在自動駕駛領域和無人飛行器領域得到普遍應用。激光雷達在建筑施工中用于精確測量和定位。云南激光雷達市價
激光雷達通過發射激光束,精確測量目標距離,是自動駕駛的關鍵傳感器。安徽Hap激光雷達渠道
為了克服探測距離的限制,FLASH激光雷達的表示廠商Ibeo、LedderTech開始在激光收發模塊進行創新。車規級激光雷達鼻祖Ibeo,則一步到位推出了單光子激光雷達,Ibeo稱其為Focal Plane Array焦平面,實際也可歸為FlASH激光雷達。2019年8月27日,長城汽車與德國激光雷達廠商Ibeo正式簽署了激光雷達技術戰略合作協議,三方合作的產品基礎就是ibeonEXT Generic 4D Solid State LiDAR。從長遠來看,FLASH激光雷達芯片化程度高,規模化量產后大概率能拉低成本,隨著技術的發展,FLASH激光雷達有望成為主流的技術方案。安徽Hap激光雷達渠道