發射端與預定目標之間的大氣雜質會產生虛假回波——這些大氣雜質產生的虛假回波可能會非常強烈,以至于無法可靠的檢測到來自預定目標物的回波信號。可用光功率限制——更高功率的光束可以提供更高的精度,但也更加昂貴。掃描速度——激光光源的工作頻率可能對人眼造成危害并引發安全問題,然而我們可以通過其他方法來緩解這個問題。例如,固態LiDAR能夠在不威脅人眼安全的波長下運行,并且還能照亮更廣闊的區域。來自附近其他LiDAR裝置的信號串擾可能會干擾目標信號。激光雷達的發展趨勢是向著小型化、低功耗、高性能的方向發展,以適應日益普及的自動駕駛和智能交通應用。天津微波激光雷達制造
激光雷達產業自誕生以來,緊跟底層器件的前沿發展,呈現出了技術水平高的突出特點。激光雷達廠商不斷引入新的技術架構,提升探測性能并拓展應用領域:從激光器發明之初的單點激光雷達到后來的單線掃描激光雷達,以及在無人駕駛技術中獲得普遍認可的多線掃描激光雷達,再到技術方案不斷創新的固態式激光雷達、FMCW激光雷達,以及如今芯片化的發展趨勢,激光雷達一直以來都是新興技術發展及應用的表示。適用于實現部分視場角(如前向)的探測,因為不含機械掃描器件,其體積相較于其他架構較為緊湊。云南激光雷達廠家激光雷達的智能化處理提高了數據解析的自動化水平。
目前的激光雷達,不光只有光探測與測量,更是一種集激光、全球定位系統(GPS)和IMU(InertialMeasurementUnit,慣性測量裝置)三種技術于一身的系統,用于獲得數據并生成精確的DEM(數字高程模型)。這三種技術的結合,可以高度準確地定位激光束打在物體上的光斑,測距精度可達厘米級,激光雷達較大的優勢就是"精確"和"快速、高效作業"。隨著激光雷達技術的進步與發展,星載激光雷達的研制和應用在20世紀90年代逐步成熟。2003年,NASA根據早先提出的采用星載激光雷達測量兩極地區冰面變化的計劃,正式將地學激光測高儀列入地球觀測系統中,并將其搭載在冰體、云量和陸地高度監測衛星上發射升空運行。
從自動駕駛技術發展來看,L0-L2階段,傳感器與控制系統的革新是主要變化;L3-L4階段,感知與決策能力的增強是主要變化。L2、L3及L4級別的智能駕駛所需激光雷達臺數分別為0臺、1臺和5臺,激光雷達稱為推動智能駕駛發展的重要因素。就國內市場而言,中國擁有世界較大的高級輔助駕駛和無人駕駛市場,成長空間也較為廣闊。2020年11月發布的《智能網聯汽車技術路線圖(2.0版)》明確指出到2030年我國L2和L3級滲透率要超過70%。但激光雷達的技術路線仍然有其他的選項尚未成熟,市場目前依然處于群雄逐鹿的狀態。伴隨著在汽車行業的不斷滲透與工業自動化的發展,激光雷達的投資機會可不斷給到我們想象空間。激光雷達的應用領域還包括機器人導航、安防監控等,可以滿足不同行業對于距離測量和目標探測的需求。
二維掃描振鏡激光雷達,這類激光雷達的主要元件是兩個掃描器——多邊形棱鏡和垂直掃描振鏡,分別負責水平和垂直方向上的掃描。特點是掃描速度快,精度高。比如:一個四面多邊形,只移動八條激光器光束(相當于傳統的8線激光雷達),以5000rpm速度掃描,垂直分辨率為2667條/秒,120度水平掃描,在10Hz非隔行掃描下,垂直分辨率達267線。優點:轉速越高,掃描精度越高;可以控制掃描區域,提高關鍵區域的掃描密度;多邊形可提供超寬FOV,一般可做到水平120度。MEMSLidar一般不超過80度;通光孔徑大,信噪比和有效距離要遠高于MEMSLidar;價格低廉,MEMS振鏡貴的要上千美元,多邊形激光掃描已經非常成熟,價格只要幾十美元;激光雷達間抗干擾性強缺點:與MEMS技術比,其缺點是功耗高,有電機轉動部件。激光雷達的光學系統需要具有高反射率、低衰減和大光學孔徑等特性,以提高傳感器的性能和測量精度。深圳泰覽Tele-15激光雷達行價
激光雷達的掃描速度快,提高了數據處理效率。天津微波激光雷達制造
發射模組:Flash激光雷達采用的是垂直腔面發射激光器(VerticalCavitySurfaceEmittingLaser,VCSEL),比其他激光器更小、更輕、更耐用、更快、更易于制造,并且功率效率更高。接收模組:Flash激光雷達的性能主要取決于焦平面探測器陣列的靈敏度。焦平面探測器陣列可使用PIN型光電探測器,在探測器前端加上透鏡單元并采用高性能讀出電路,可實現短距離探測。對于遠距離探測需求,需要使用到雪崩型光電探測器,其探測的靈敏度高,可實現單光子探測,基于APD的面陣探測器具有遠距離單幅成像、易于小型化等優點。優點:一次性實現全局成像來完成探測,無需考慮運動補償;無掃描器件,成像速度快;集成度高,體積小;芯片級工藝,適合量產;全固態優勢,易過車規缺點:激光功率受限,探測距離近;抗干擾能力差;角分辨率低天津微波激光雷達制造