氧化石墨烯(GO)在很寬的光譜范圍內具有光致發光性質,同時也是高效的熒光淬滅劑。氧化石墨烯(GO)具有特殊的光學性質和多樣化的可修飾性,為石墨烯在光學、光電子學領域的應用提供了一個功能可調控的強大平臺[6],其在光電領域的應用日趨***。氧化石墨烯(GO)和還原氧化石墨烯(RGO)應用于光電傳感,主要是作為電子給體或者電子受體材料。作為電子給體材料時,利用的是其在光的吸收、轉換、發射等光學方面的特殊性質,作為電子受體材料時,利用的是其優異的載流子遷移率等電學性質。本書前面的內容中對氧化石墨烯(GO)、還原氧化石墨烯(RGO)的電學性質已經有了比較詳細的論述,本章在介紹其在光電領域的應用之前,首先對相關的光學性質部分進行介紹。石墨烯在可見光范圍內的光吸收系數近乎常數。寧波哪些氧化石墨
太赫茲技術可用于醫學診斷與成像、反恐安全檢查、通信雷達、射電天文等領域,將對技術創新、國民經濟發展以及**等領域產生深遠的影響。作為極具發展潛力的新技術,2004年,美國**將THz科技評為“改變未來世界的**技術”之一,而日本于2005年1月8日更是將THz技術列為“國家支柱**重點戰略目標”**,舉全國之力進行研發。傳統的寬帶THz波可以通過光整流、光電導天線、激光氣體等離子體等方法產生,窄帶THz波可以通過太赫茲激光器、光學混頻、加速電子、光參量轉換等方法產生。無污染氧化石墨導熱膜與石墨烯量子點類似,氧化石墨烯量子點也具備一些特殊的性質。
氧化石墨烯經還原處理后,對于提高其導電性、比表面等大有裨益,使得石墨烯可以應用于對于導電性、導熱性等要求更高的應用中。在還原過程,含氧官能團的去除和控制過程本身也可成為石墨烯改性的一種方式,根據還原方式的不同得到的石墨烯也具有不同的特性和應用場景。例如,通過熱還原方式得到的還原氧化石墨烯結構、形貌、組分可通過還原條件進行適當的調控。Dou等1人介紹了在氬氣流下在1100-2000°C的溫度范圍內進行熱處理得到的石墨烯結構和吸附性能的研究。所得到石墨烯粉體材料的表面積增加至超過起始前驅體材料四倍,對氧化石墨烯進行熱還原處理提高了氧化石墨烯的熱學性能,賦予了氧化石墨烯材料熱管理方面的應用。
多層氧化石墨烯(GO)膜在不同pH水平下去除水中有機物質的系統性能評價和機理研究。該研究采用逐層組裝法制備了PAH/GO雙層膜,對典型單價離子(Na+,Cl-)和多價離子(SO42-,Mg2+)以及有機染料(亞甲藍MB,羅丹明R-WT)和藥物和個人護理品(三氯生TCS,三氯二苯脲TCC)在反滲透膜系統中通過GO膜的行為進行研究。結果發現,在pH=7時,無論其電荷、尺寸或疏水性質如何,GO膜能夠高效去除多價陽離子/陰離子和有機物,但對于單價離子的去除率較低。傳統的納濾膜通常帶負電,且只能去除帶有負電荷的多價離子和有機物。隨著pH的變化,GO膜的關鍵性質(例如電荷,層間距)發生***變化,導致不同的pH依賴性界面現象和分離機制,一些有機物(例如三氯二苯脲)的分子形狀由于這種有機物與GO膜的碳表面的遷移性和π-π相互作用而極大地影響了它們的去除。氧化石墨可以用于提高環氧樹脂、聚乙烯、聚酰胺等聚合物的導熱性能。
氧化石墨烯表面含有-OH和-COOH等豐富的官能團,在水中可發生去質子化等反應帶有負電荷,由于靜電作用將金屬陽離子吸附至表面;相反的,如果水中pH等環境因素發生變化,氧化石墨烯表面也可攜帶正電荷,則與金屬離子產生靜電斥力,二者之間的吸附作用**減弱。而靜電作用的強弱與氧化石墨烯表面官能團產生的負電荷相關,其受環境pH值的影響較明顯。Wang44等人的研究證明,在pH>pHpzc時(pHpzc=3.8),GO表面的官能團可發生去質子化反應而帶負電,可有效吸附鈾離子U(VI),其吸附量可達到1330mg/g。氧化石墨烯(GO)是印刷電子、催化、儲能、分離膜、生物醫學和復合材料的理想材料。河北合成氧化石墨
在用氧化還原法將石墨剝離為石墨烯的工業化生產過程中,得到的石墨烯微片富含多種含氧官能團。寧波哪些氧化石墨
在光通信領域,徐等人開發了飛秒氧化石墨烯鎖模摻鉺光纖激光器,與基于石墨烯的可飽和吸收體相比,具有性能有所提升,并且具有易于制造的優點[95],這是GO/RGO在與光纖結合應用**早的報道之一。在傳感領域,Sridevi等提出了一種基于腐蝕布拉格光柵光纖(FBG)外加GO涂層的高靈敏、高精度生化傳感器,該方法在檢測刀豆球蛋白A中進行了試驗[96]。為了探索光纖技術和GO特性結合的優點,文獻[97]介紹了不同的GO涂層在光纖樣品上應用的特點,還分析了在傾斜布拉格光柵光纖FBG(TFBG)表面增加GO涂層對折射率(RI)變化的影響,論證了這種構型對新傳感器的發展的適用性。圖9.14給出了歸一化的折射率變化數據,顯示了這種構型在多種傳感領域應用的可能。寧波哪些氧化石墨