深度學習技術已在滾動軸承故障監測和診斷領域取得了成功應用, 但面對不停機情況下的早期故障在線監測問題, 仍存在著早期故障特征表示不充分、誤報警率高等不足. 為解決上述問題, 本文從時序異常檢測的角度出發, 提出了一種基于深度遷移學習的早期故障在線檢測方法. 首先, 提出一種面向多域遷移的深度自編碼網絡, 通過構建具有改進的比較大均值差異正則項和Laplace正則項的損失函數, 在自適應提取不同域數據的公共特征表示同時, 提高正常狀態和早期故障狀態之間特征的差異性; 基于該特征表示, 提出一種基于時序異常模式的在線檢測模型, 利用離線軸承正常狀態的排列熵值構建報警閾值, 實現在線數據中異常序列的快速匹配, 同時提高在線檢測結果的可靠性. 在XJTU-SY數據集上的實驗結果表明, 與現有代表性早期故障檢測方法相比, 本文方法具有更好的檢測實時性和更低的誤報警數.大型旋轉機械振動狀態在線監測系統監測對象涵蓋汽輪機、燃氣輪機、發電機、泵群、風機等大型旋轉設備。杭州減振監測介紹
傳統方法通常無法自適應提取特征, 同時需要一定的離線數據訓練得到檢測模型, 但目標對象在線場景下采集到的數據有限, 且其數據分布與訓練數據的分布可能因隨機噪聲、變工況等原因而存在差異, 導致離線訓練的模型并不完全適合于在線數據, 容易降低檢測結果的準確性; 其次, 上述方法通常采用基于異常點的檢測算法, 未充分考慮樣本前后的時序關系, 容易因數據微小波動而產生誤報警, 降低檢測結果的魯棒性; 再次, 為降低誤報警, 這類方法需要反復調整報警閾值. 此外, 基于系統分析的故障診斷方法利用狀態空間描述建立機理模型, 可獲得理想的診斷和檢測結果, 但這類方法通常需要提前知道系統運動方程等信息, 對于軸承運行過程來說, 這類信息通常不易獲知. 近年來, 深度神經網絡已被成功應用于早期故障特征的自動提取和識別, 可自適應地提取信息豐富和判別能力強的深度特征, 因此具有較好的普適性. 但是, 這類方法一方面需要大量的輔助數據進行模型訓練, 而歷史采集的輔助數據與目標對象數據可能存在較大不同, 直接訓練并不能有效提升在線檢測的特征表示效果; 另一方面, 在訓練過程中未能針對早期故障引發的狀態變化而有目的地強化相應特征表示. 因此, 深度學習方法在早期故障在線監測中的應用仍存在較大的提升空間.南京EOL監測特點一款智能化的監測系統,能夠為企業提供完整的數據監測和分析服務。
電機狀態監測和振動分析提供加速度計選擇的建議。這些建議基于直流和非同步交流電機的常見故障。這些常見故障可通過振動分析檢測出來,包括機械和電氣故障。重點是傳感器的頻率范圍及其安裝方法,以便可靠地檢測這些故障。例如,考慮以幾百赫茲的周期性頻率(稱為故障頻率)發生的撞擊事件,但每個事件的能量可從起始點帶走,頻率在低至千赫范圍內。因此,用于檢測撞擊、摩擦和凹槽等事件的傳感器應在幾百赫茲到20千赫的寬頻范圍內響應。對于傳統的機械故障,如平衡和對準,頻率范圍從約0.2倍的運行速度到50-60倍的運行速度是足夠的。電氣故障需要機械故障所需的低頻和高頻段。
電機會同時出現機械和電氣故障,這會導致振動。只要安裝的振動傳感器具有足夠的帶寬和靈敏度,就可以檢測到這些故障。機械故障伴隨著沖擊、摩擦和疲勞,會產生比電氣故障頻率更***的振動,但凹槽除外。凹槽產生的振動頻率與摩擦頻率大致相同。如果傳感器的帶寬和安裝方法足以檢測機械故障,那么它們也將檢測電氣故障。
故障診斷可以使系統在一定工作環境下根據狀態監測系統提供的信息來查明導致系統某種功能失調的原因或性質,判斷劣化發生的部位或部件,以及預測狀態劣化的發展趨勢等。電機故障診斷的基本方法主要有:1、電氣分析法,通過頻譜等信號分析方法對負載電流的波形進行檢測從而診斷出電機設備故障的原因和程度;檢測局部放電信號;對比外部施加脈沖信號的響應和標準響應等;2、絕緣診斷法,利用各種電氣試驗裝置和診斷技術對電機設備的絕緣結構和參數、工作性能是否存在缺陷做出判斷,并對絕緣壽命做出預測;3、溫度檢測方法,采用各種溫度測量方法對電機設備各個部位的溫升進行監測,電機的溫升與各種故障現象相關;4、振動與噪聲診斷法,通過對電機設備振動與噪聲的檢測,并對獲取的信號進行處理,診斷出電機產生故障的原因和部位,尤其是對機械上的損壞診斷特別有效。5、化學診斷的方法,可以檢測到絕緣材料和潤滑油劣化后的分解物以及一些軸承、密封件的磨損碎屑,通過對比其中一些化學成分的含量,可以判斷相關部位元件的破壞程度。有效的刀具監測系統可大幅度提效率、提高工件尺寸精度和一致性、減少生產成本,實現數控加工自動化。
預測性維護應運而生。其是以狀態為依據的維修,主要是對設備在運行中產生的二次效應(如振動、噪聲、沖擊脈沖、油樣成分、溫度等)進行連續在線的狀態監測及數據分析,診斷并預測設備故障的發展趨勢,提前制定預測性維護計劃并實施檢維修的行為。總體來看,狀態監測和故障診斷是判斷預測性維護是否合理的根本所在,數據狀態的連續監測和遠程傳輸上傳相對已經比較成熟,而狀態預測和故障診斷主要還是依靠人工分析實現,診斷分析人員通過趨勢?波形?頻譜等專業分析工具,結合傳動結構?機械部件參數等信息,實現設備故障的精細定位。其發展趨勢是將物聯網及人工智能技術引入狀態預測及故障的智能診斷,從而降低誤判概率,大幅提升診斷效率和準確性。系統可以從振動信號等監測數據中可以提取時頻特征、小波特征、包絡譜特征等早期故障特征。常州降噪監測介紹
新型電機故障監測系統借用物聯網、人工智能、邊緣計算等技術,提前預判設備故障。杭州減振監測介紹
刀具切削狀態的實時監測與管理也是實現制造系統現代化、自動化、柔性化的基礎。出現于90年代的智能刀具技術受到越來越多的關注,并在近20年來得到迅速發展。精確地預報刀具在加工中,尤其是在制造成本極高的精密零件加工中的失效時間對提高零件的加工效率和質量、減少生產成本及研制周期具有重要意義。日本京瓷工業陶瓷公司提出一種裝有磨損傳感器的可轉位刀片刀具壽命診斷系統。這種智能刀具系統采用Ceratip傳感器,它在正方形的陶瓷刀片表面上,涂覆一層厚度為0.3μm的TiN,刀具在開始切削時,使裝有傳感器的刀片涂覆層通過電流,形成一微電子回路。當刀具在切削力的作用下磨損時,刀片表面上的TiN涂覆層首先被破壞,這時電流不能通過裝有傳感器的刀片涂覆層(斷電),用電表測量時,此處微電子回路的電阻變為無限大。這時裝在刀片上的傳感器,將立即向機床控制系統發出信號,由機床控制系統控制機床立刻停機并執行自動換刀程序。這種刀具壽命診斷系統能直接測量出刀尖的磨損情況并快速、準確地預報刀具的失效時間。杭州減振監測介紹
上海盈蓓德智能科技有限公司是一家集生產科研、加工、銷售為一體的****,公司成立于2019-01-02,位于上海市閔行區新龍路1333號28幢328室。公司誠實守信,真誠為客戶提供服務。公司業務不斷豐富,主要經營的業務包括:智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統等多系列產品和服務。可以根據客戶需求開發出多種不同功能的產品,深受客戶的好評。公司秉承以人為本,科技創新,市場先導,和諧共贏的理念,建立一支由智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統**組成的顧問團隊,由經驗豐富的技術人員組成的研發和應用團隊。在市場競爭日趨激烈的現在,我們承諾保證智能在線監診系統,西門子Anovis,聲音與振動分析,主動減振降噪系統質量和服務,再創佳績是我們一直的追求,我們真誠的為客戶提供真誠的服務,歡迎各位新老客戶來我公司參觀指導。