結構設計,減震墊設計:在電源底部和安裝位置之間設置減震墊,材料可選擇橡膠或硅膠等,它們具有良好的彈性和減震性能,能有效減少振動對電源的影響。加固設計:通過增加電源的強度和剛性提高其對振動和沖擊的承受能力,如使用金屬板、塑料板等加固材料,對電源外殼或內部關鍵結構進行加固。 緩沖設計:在電源內部設置緩沖材料,如泡沫、海綿等,用于吸收振動和沖擊的能量,減少其對電源內部結構的損傷。合理布局:合理規劃內部空間,盡量將較重的元件放置在靠近底部的位置,降低重心,增加穩定性。同時,要確保元件之間有足夠的間距,避免在震動過程中相互碰撞。 元件選擇與安裝,選擇耐振元件:優先選用抗振性能好的電子元件,如具有堅固封裝、良好焊接性能和高機械強度的元件。對于一些關鍵的易損元件,可選擇有額外加固措施或抗振設計的型號。電源可提供任意寬范圍的工作溫度。青海開關電源工程技術
高精度的采樣電路:對輸出電壓和電流進行精確采樣,采用高精度的電阻、電容等采樣元件以及高性能的模數轉換器(ADC),確保采樣數據的準確性。優丨質的功率器件:選擇性能優良、參數穩定的開關管、二極管、電感、電容等功率器件,減少器件本身的參數變化對輸出電壓的影響。合理的電路布局和布線:減少電磁干擾和信號串擾,提高電路的穩定性和可靠性。例如采用多層電路板設計、合理規劃電源和地平面、對敏感信號進行屏蔽等。冗余設計:采用多個電源模塊并聯或串聯,當其中一個模塊出現故障時,其他模塊可以繼續工作,保證輸出電壓的穩定性,如 ZXGZDW 直流電源屏的功率輸出單元采用模塊化(n + 1)冗余設計。 上海開關電源服務電話產品在使用過程中的顛震設計。
采用先進的電路拓撲:如采用移相全橋 ZVS-PWM 電路拓撲,可實現開關管的零電壓開關,減少開關損耗,提高電源效率和功率密度。還可采用交錯并聯 Boost 電路拓撲,能減小輸入輸出電流紋波,提高電源的可靠性和功率密度。選用高性能的功率器件:氮化鎵(GaN)和碳化硅(SiC)等寬禁帶半導體器件,具有高開關速度、低導通電阻和高耐壓等優點,能有效減小功率器件的尺寸和損耗,提高電源功率密度。優化磁性元件設計:采用高頻磁芯材料,如納米晶、非晶等,可提高磁芯的工作頻率和飽和磁通密度,減小磁性元件的尺寸。還可利用平面變壓器和集成磁技術,將多個磁性元件集成在一起,減小體積,提高功率密度。高效的散熱設計:可通過增加散熱片的面積、優化散熱片的形狀和結構等方式,提高散熱效率。也可采用熱管、液冷等先進的散熱技術,有效降低電源內部的溫度,保證電源的正常工作
設計方面 提高功率密度:采用先進的電力電子技術,如軟開關技術、多電平變換技術等,提高能量轉換效率,減少能源損耗,在有限的空間內實現更高的功率輸出,滿足航空航天、艦載等對電源體積和重量要求嚴苛的應用場景。 增強可靠性設計:運用冗余設計,包括電源模塊冗余、電路冗余等,當部分電路或模塊出現故障時,其他部分可繼續工作,確保電源系統不間斷供電。如朗原科技的加固式 CPCI 機載電源采用電源板與殼體緊密貼合設計,提高散熱性能,確保設備在長時間運行下依舊能夠保持穩定的工作狀態。 優化電磁兼容設計:在設計中融入電磁兼容性原則,通過合理的電路布局、屏蔽技術、濾波技術等,確保電源系統在復雜電磁環境下可靠工作,減少自身對外界的電磁干擾,同時提高抗干擾能力。產品在使用過程中的振動設計。
元件選型與布局,選用小型化元件:優先選擇尺寸小的半導體器件、貼片式電容和電感等,如采用晶圓級芯片規模封裝(WLCSP)的開關穩壓器 IC,可明顯減小電源體積。優化元件布局:合理規劃元件在電路板上的位置,如將發熱元件分散放置以利于散熱,同時縮小元件間的間距,提高布局緊湊性。采用多層電路板技術,將不同功能的電路層疊布置,增加布線空間,減少電路板面積。 選擇合適拓撲:對于小尺寸高功率密度需求,可采用全橋、半橋等拓撲結構,其在功率轉換效率和功率密度方面有優勢。如反激式拓撲適用于小功率、隔離要求高的場合,正激式拓撲可用于中等功率且對輸出電壓精度要求高的情況。集成化拓撲:發展集成化的拓撲結構,將多個功能模塊集成在一個芯片或模塊中,減少外部連接線路和元件數量,如采用集成了功率開關管、驅動電路和控制電路的功率模塊,可使電源結構更緊湊。采用數字電路,實現電源小型化。青海開關電源工程技術
公司支持做OEM產品代工。青海開關電源工程技術
元件選擇與優化 變壓器:選擇鐵氧體磁芯或納米晶磁芯等高性能材料,合理設計繞組結構,減小繞組電阻和漏感,確保良好的散熱性能。 開關元件:選用具有低導通電阻和低開關損耗的功率器件,如碳化硅(SiC)和氮化鎵(GaN)等寬禁帶半導體器件,確保開關元件有足夠散熱面積和散熱通道。 電感與電容:選擇質量優良的電感和電容,合理設計其規格和布局,以降低高頻下的損耗。 電路設計優化 功率因數校正(PFC):通過 PFC 電路減少無功功率,提高輸入功率的有效利用,改善電源輸入和輸出之間的功率因數,減少電網中的諧波污染和能量損失。 軟開關技術:采用零電壓開關(ZVS)和零電流開關(ZCS)等軟開關技術,在開關動作前后引入諧振或輔助電路,使開關元件在零電壓或零電流條件下進行切換,降低開關損耗。 降低電路寄生參數:優化 PCB 布局和布線,采用多層 PCB 板和合理的接地方式,降低電路中的寄生電感和電容引起的額外能量損耗。青海開關電源工程技術