基準站首先將自己獲得的載波相位觀測值及站點坐標,通過數據通信鏈實時發送給周圍工作的動態用戶。流動站數據處理模塊使用動態差分定位的方法確定流動站相對基準站的坐標,然后根據基準站的坐標反算自身的瞬時坐標。RTK定位施工優勢:基準站一般需要安裝在房頂或者開闊區域的地面上,設備只需要供電即可,無需施工布線,配合室內定位可實現室內外的無縫切換精確定位。1.作業效率高;2.定位精度高,數據安全可靠;3.降低了作業條件要求;4.RTK作業自動化,集成化程度高,測繪功能強大;5.操作簡便,容易使用,數據處理能力強。RTK定位技術:室內外一體定位系統解決方案RTK室外高精度實時定位系統,通過在定位區域部署RTK地面接收站來接收衛星校準數據,并將數據通過LORA數傳基站廣播給定位胸牌,定位目標攜帶的RTK定位胸牌實時接收差分基站廣播的差分數據和定位數據,通過內部算法,即可實時精確地定位目標位置,并實現厘米級的高精度定位。同時,在室內定位區域部署AOA藍牙高精度定位系統,也可實現厘米級的高精度定位。 高效接收,精確導航,RTK天線助您更快完成工作任務。廣東芯片廠家RTK天線芯片
RTK(Real-time kinematic,實時動態)載波相位差分技術,是實時處理兩個測量站載波相位觀測量的差分方法,將基準站采集的載波相位發給用戶接收機,進行求差解算坐標。這是一種新的常用的衛星定位測量方法,以前的靜態、快速靜態、動態測量都需要事后進行解算才能獲得厘米級的精度,而RTK是能夠在野外實時得到厘米級定位精度的測量方法,它采用了載波相位動態實時差分方法,是GPS應用的重大里程碑,它的出現為工程放樣、地形測圖,各種控制測量帶來了新的測量原理和方法,極大地提高了作業效率。廣東2D場形圖RTK天線質量RTK天線的數據存儲容量大,可存儲大量測量數據。
各種控制測量傳統的大地測量、工程控制測量采用三角網、導線網方法來施測,不僅費工費時,要求點間通視,而且精度分布不均勻,月在外業不知精度如何,采用常規的GPS靜態測量、快速靜態、偽動態方法,在外業測設過程中不能實時知道定位精度,如果測設完成后,回到內業處理后發現精度不合要求,還必須返測,而采用RTK來進行控制測量,能夠實時知道定位精度,如果點位精度要求滿足了,用戶就可以停止觀測了,而且知道觀測質量如何,這樣可以**提高作業效率。如果把RTK用于公路控制測量、電力線路測量、水利工程控制測量、大地測量、則不僅可以**減少人力強度、節省費用,而且**提高工作效率,測一個控制點在幾分鐘甚至于幾秒鐘內就可完成。
單天線RTK解決方案需要依賴以下關鍵技術:.衛星信號接收:移動站和參考站需要配備接收衛星信號的設備,如GPS接收器。·觀測數據采集:參考站需要實時采集衛星觀測數據,包括偽距觀測值、載波相位觀測值等。
基線計算:基于觀測數據和衛星星歷數據,進行基線計算,得到基線信息。·基線傳輸:將基線信息傳輸給移動站,可通過無線電通信、互聯網等方式進行傳輸。·定位計算:移動站接收到基線信息后,根據自身的觀測數據進行定位計算。定位輸出:將定位結果輸出,包括經緯度、高度等信息。 RTK天線的電池壽命長,可滿足長時間的測量需求。
基準站建在已知或未知點上;基準站接收到的衛星信號通過無線通信網實時發給用戶;用戶接收機將接收到的衛星信號和收到基準站信號實時聯合解算,求得基準站和流動站間坐標增量(基線向量)。站間距30公里,平面精度1-2厘米。高精度的GPS測量必須采用載波相位觀測值,RTK定位技術就是基于載波相位觀測值的實時動態定位技術。它能夠實時地提供測站點在指定坐標系中的三維定位結果,并達到厘米級精度。在RTK作業模式下,基準站通過數據鏈將其觀測值和測站坐標信息一起傳送給流動站。流動站不僅通過數據鏈接收來自基準站的數據,還要米集GPS戲測數據,開任奈統內占以壓q行初始(1后氏進入理,同時給出厘米級定位結果,歷時不足一秒鐘。流動站可處于靜止狀態,也P處于運4隊態巳在AA用上P‘A元H行每個E元動態作業,也可在動態條件下直接開機,并在動態環境下完成整周模糊度的搜索求解。在整周未知數解固定后的實時處理,只要能保持四顆以上衛位觀測值的跟蹤和必要的幾何圖形,則流動站可隨時給出厘米級定位結果。 RTK天線-創新設計和技術支持的完美結合,提升您的生產力。廣東儀器RTK天線功分器
RTK天線的定位速度快,可快速定位目標。廣東芯片廠家RTK天線芯片
GPS衛星定位測量是利用GPS接收機接收從衛星播發的信息來確定觀測點位的三維坐標。同其它種類的測量方法一樣,GPS衛星定位測量也存在著多種誤差。按其來源可分為與衛星、信號傳播、信號接收以及其它一些空間環境有關的誤差。習慣上,將各種誤差的影響投影到觀測站至衛星的距離上,以相應距離來表示,稱為等效距離誤差。若按誤差的性質,GPS測量誤差可分為系統誤差和偶然誤差兩大類。偶然誤差主要包括信號的多路徑效應及觀測誤差等,這些誤差都不是人為可以控制的。系統誤差主要包括衛星的軌道誤差(也稱衛星星歷誤差)、衛星鐘差、接收機鐘差以及大氣折射誤差等。從數值上相比,它們的大小遠遠大于偶然誤差,是GPS定位測量的主要誤差來源。但它們與偶然誤差很不同,有一定的規律可循,可根據其產生的原因采取不同的措施加以消除或減弱。 廣東芯片廠家RTK天線芯片