極值法求解過程計算簡單,快速,同時確定薄膜的多個光學常數及解決多值性問題,測試范圍廣,但沒有考慮薄膜均勻性和基底色散的因素,以至于精度不夠高。此外,由于受曲線擬合精度的限制,該方法對膜厚的測量范圍有要求,通常用這種方法測量的薄膜厚度應大于200nm且小于10μm,以確保光譜信號中的干涉波峰數恰當。全光譜擬合法是基于客觀條件或基本常識來設置每個擬合參數上限、下限,并為該區域的薄膜生成一組或多組光學參數及厚度的初始值,引入適合的色散模型,再根據麥克斯韋方程組的推導。這樣求得的值自然和實際的透過率和反射率(通過光學系統直接測量的薄膜透射率或反射率)有所不同,建立評價函數,當計算的透過率/反射率與實際...
白光干涉的相干原理早在1975年就已經被提出,隨后于1976年在光纖通信領域中獲得了實現。1983年,BrianCulshaw的研究小組報道了白光干涉技術在光纖傳感領域中的應用。隨后在1984年,報道了基于白光干涉原理的完整的位移傳感系統。該研究成果證明了白光干涉技術可以被用于測量能夠轉換成位移的物理參量。此后的幾年間,白光干涉應用于溫度、壓力等的研究相繼被報道。自上世紀九十年代以來,白光干涉技術快速發展,提供了實現測量的更多的解決方案。近幾年以來,由于傳感器設計與研制的進步,信號處理新方案的提出,以及傳感器的多路復用等技術的發展,使得白光干涉測量技術的發展更加迅速。隨著技術的進步和應用領域的...
白光光譜法克服了干涉級次的模糊識別問題,具有測量范圍大,連續測量時波動范圍小的特點,但在實際測量中,由于測量誤差、儀器誤差、擬合誤差等因素,干涉級次的測量精度仍其受影響,會出現干擾級次的誤判和干擾級次的跳變現象。導致公式計算得到的干擾級次m值與實際譜峰干涉級次m'(整數)之間有誤差。為得到準確的干涉級次,本文依據干涉級次的連續特性設計了校正流程圖,獲得了靶丸殼層光學厚度的精確值。導入白光干涉光譜測量曲線。白光干涉膜厚儀是用于測量薄膜厚度的一種儀器,可用于透明薄膜和平行表面薄膜的測量。白光干涉膜厚儀產品原理由于靶丸自身特殊的特點和極端的實驗條件,使得靶丸參數的測試工作變得異常復雜。光學測量方法具...
在白光干涉中,當光程差為零時,會出現零級干涉條紋。隨著光程差的增加,光源譜寬范圍內的每條譜線形成的干涉條紋之間會發生偏移,疊加后整體效果導致條紋對比度降低。白光干涉原理的測量系統精度高,可以進行測量。采用白光干涉原理的測量系統具有抗干擾能力強、動態范圍大、快速檢測和結構簡單緊湊等優點。雖然普通的激光干涉與白光干涉有所區別,但它們也具有許多共同之處。我們可以將白光看作一系列理想的單色光在時域上的相干疊加,而在頻域上觀察到的就是不同波長對應的干涉光強變化曲線。工作原理是基于膜層與底材反射率及相位差,通過測量反射光的干涉來計算膜層厚度。膜厚儀生產廠家哪家好為限度提高靶丸內爆壓縮效率,期望靶丸所有幾何...
白光干涉光譜分析是目前白光干涉測量的一個重要方向。此項技術通過使用光譜儀將對條紋的測量轉變為對不同波長光譜的測量,分析被測物體的光譜特性,得到相應的長度信息和形貌信息。與白光掃描干涉術相比,它不需要大量的掃描過程,因此提高了測量效率,并減小了環境對其影響。此項技術能夠測量距離、位移、塊狀材料的群折射率以及多層薄膜厚度等。白光干涉光譜分析基于頻域干涉的理論,采用白光作為寬波段光源,經過分光棱鏡折射為兩束光。這兩束光分別經由參考面和被測物體入射,反射后再次匯聚合成,并由色散元件分光至探測器,記錄頻域干涉信號。這個光譜信號包含了被測表面信息,如果此時被測物體是薄膜,則薄膜的厚度也包含在光譜信號當中。...
由于不同性質和形態的薄膜對系統的測量量程和精度的需求不盡相同,因而多種測量方法各有優缺,難以一概而論。按照薄膜厚度的增加,適用的測量方式分別為橢圓偏振法、分光光度法、共聚焦法和干涉法。對于小于1μm的較薄薄膜,白光干涉輪廓儀的測量精度較低,分光光度法和橢圓偏振法較適合。而對于小于200nm的薄膜,由于透過率曲線缺少峰谷值,橢圓偏振法結果更加可靠。基于白光干涉原理的光學薄膜厚度測量方案目前主要集中于測量透明或者半透明薄膜,通過使用不同的解調技術處理白光干涉的圖樣,得到待測薄膜厚度。本章在詳細研究白光干涉測量技術的常用解調方案、解調原理及其局限性的基礎上,分析得到了常用的基于兩個相鄰干涉峰的白光干...
白光干涉測量技術,也稱為光學低相干干涉測量技術,使用的是低相干的寬譜光源,如超輻射發光二極管、發光二極管等。與所有光學干涉原理一樣,白光干涉也是通過觀察干涉圖案變化來分析干涉光程差變化,并通過各種解調方案實現對待測物理量的測量。采用寬譜光源的優點是,由于白光光源的相干長度很小(一般為幾微米到幾十微米之間),所有波長的零級干涉條紋重合于主極大值,即中心條紋,與零光程差的位置對應。因此,中心零級干涉條紋的存在為測量提供了一個可靠的位置參考,只需一個干涉儀即可進行待測物理量的測量,克服了傳統干涉儀不能進行測量的缺點。同時,相對于其他測量技術,白光干涉測量方法還具有環境不敏感、抗干擾能力強、動態范圍大...
傅里葉變換是白光頻域解調方法中一種低精度的信號解調方法。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調。因此,該解調方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進而得到待測物理量的信息。傅里葉變換解調方案的優點是解調速度較快,受干擾信號的影響較小。但是其測量精度較低。根據數字信號處理FFT(快速傅里葉變換)理論,若輸入光源波長范圍為λ1,λ2,則所測光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應用于對解調精度要求不高的場合。傅里葉變換白光干涉法是對傅里葉變換法的改進。該方法總結起來就是對采集到的光譜信號做傅里葉變換,...
白光干涉時域解調方案通過機械掃描部件驅動干涉儀的反射鏡移動,補償光程差,實現對信號的解調。該系統的基本結構如圖2-1所示。光纖白光干涉儀的兩個輸出臂分別作為參考臂和測量臂,用于將待測的物理量轉換為干涉儀兩臂的光程差變化。測量臂因待測物理量的變化而增加未知光程差,參考臂則通過移動反射鏡來補償測量臂所引入的光程差。當干涉儀兩臂光程差ΔL=0時,即兩個干涉光束的光程相等時,將出現干涉極大值,觀察到中心零級干涉條紋,這種現象與外界的干擾因素無關,因此可以利用它來獲取待測物理量的值。會影響輸出信號強度的因素包括:入射光功率、光纖的傳輸損耗、各端面的反射等。雖然外界環境的擾動會影響輸出信號的強度,但對...
可以使用光譜分析方法來確定靶丸折射率和厚度。極值法和包絡法、全光譜擬合法是通過分析膜的反射或透射光譜曲線來計算膜厚度和折射率的方法。極值法測量膜厚度是根據薄膜反射或透射光譜曲線上的波峰的位置來計算的。對于弱色散介質,折射率為恒定值,通過極大值點的位置可求得膜的光學厚度,若已知膜折射率即可求解膜的厚度;對于強色散介質,首先利用極值點求出膜厚度的初始值,然后利用色散模型計算折射率與入射波長的對應關系,通過擬合得到色散模型的系數,即可解出任意入射波長下的折射率。常用的色散模型有cauchy模型、Selimeier模型、Lorenz模型等。白光干涉膜厚儀需要進行校準,并選擇合適的標準樣品。小型膜厚儀定...
薄膜是一種特殊的微結構,在電子學、摩擦學、現代光學等領域得到了廣泛應用,因此薄膜的測試技術變得越來越重要。尤其是在厚度這一特定方向上,尺寸很小,基本上都是微觀可測量的。因此,在微納測量領域中,薄膜厚度的測試是一個非常重要且實用的研究方向。在工業生產中,薄膜的厚度直接影響薄膜是否能正常工作。在半導體工業中,膜厚的測量是硅單晶體表面熱氧化厚度以及平整度質量控制的重要手段。薄膜的厚度會影響其電磁性能、力學性能和光學性能等,因此準確地測量薄膜的厚度成為一種關鍵技術。白光干涉膜厚儀的應用非常廣,特別是在半導體、光學、電子和化學等領域。光干涉膜厚儀成本價白光光譜法具有測量范圍大、連續測量時波動范圍小的優點...
自上世紀60年代起,利用X及β射線、近紅外光源開發的在線薄膜測厚系統廣泛應用于西方先進國家的工業生產線中。到20世紀70年代后,為滿足日益增長的質檢需求,電渦流、電磁電容、超聲波、晶體振蕩等多種膜厚測量技術相繼問世。90年代中期,隨著離子輔助、離子束濺射、磁控濺射、凝膠溶膠等新型薄膜制備技術取得巨大突破,以橢圓偏振法和光度法為展示的光學檢測技術以高精度、低成本、輕便環保、高速穩固為研發方向不斷迭代更新,迅速占領日用電器及工業生產市場,并發展出依據用戶需求個性化定制產品的能力。其中,對于市場份額占比較大的微米級薄膜,除要求測量系統不僅具有百納米級的測量準確度及分辨力以外,還要求測量系統在存在不規...
折射率分別為1.45和1.62的2塊玻璃板,使其一端相接觸,形成67的尖劈.將波長為550nm的單色光垂直投射在劈上,并在上方觀察劈的干涉條紋,試求條紋間距。 我們可以分2種可能的情況來討論: 一般玻璃的厚度可估計為1mm的量級,這個量級相對于光的波長550nm而言,應該算是膜厚e遠遠大于波長^的厚玻璃了,所以光線通過上玻璃板時應該無干涉現象,同理光線通過下玻璃板時也無干涉現象.空氣膜厚度因劈角很小而很薄,與波長可比擬,所以光線通過空氣膜應該有干涉現象,在空氣膜的下表面處有一半波損失,故光程差應該為2n2e+λ/2. (2)假設玻璃板厚度的量級與可見光波長量級可比擬,當單...
膜厚儀是一種用于測量薄膜厚度的儀器,它的測量原理主要是通過光學或物理方法來實現的。在導電薄膜中,膜厚儀具有廣泛的應用,可以用于實時監測薄膜的厚度變化,從而保證薄膜的質量和性能。膜厚儀的測量原理主要有兩種:一種是光學方法,通過測量薄膜對光的反射、透射或干涉來確定薄膜的厚度;另一種是物理方法,通過測量薄膜對射線或粒子的散射或吸收來確定薄膜的厚度。這兩種方法都有各自的優缺點,可以根據具體的應用場景來選擇合適的測量原理。在導電薄膜中,膜厚儀可以用于實時監測薄膜的厚度變化。導電薄膜通常用于各種電子器件中,如晶體管、太陽能電池等。薄膜的厚度對器件的性能有著重要的影響,因此需要對薄膜的厚度進行精確的控制和監...
可以使用光譜分析方法來確定靶丸折射率和厚度。極值法和包絡法、全光譜擬合法是通過分析膜的反射或透射光譜曲線來計算膜厚度和折射率的方法。極值法測量膜厚度是根據薄膜反射或透射光譜曲線上的波峰的位置來計算的。對于弱色散介質,折射率為恒定值,通過極大值點的位置可求得膜的光學厚度,若已知膜折射率即可求解膜的厚度;對于強色散介質,首先利用極值點求出膜厚度的初始值,然后利用色散模型計算折射率與入射波長的對應關系,通過擬合得到色散模型的系數,即可解出任意入射波長下的折射率。常用的色散模型有cauchy模型、Selimeier模型、Lorenz模型等。工作原理是基于膜層與底材反射率及相位差,通過測量反射光的干涉來...
在激光慣性約束核聚變實驗中,靶丸的物性參數和幾何參數是靶丸制備工藝改進和仿真模擬核聚變實驗過程的基礎,因此如何對靶丸多個參數進行高精度、同步、無損的綜合檢測是激光慣性約束核聚變實驗中的關鍵問題。以上各種薄膜厚度及折射率的測量方法各有利弊,但針對本文實驗,仍然無法滿足激光核聚變技術對靶丸參數測量的高要求,靶丸參數測量存在以下問題:不能對靶丸進行破壞性切割測量,否則,被破壞后的靶丸無法用于于下一步工藝處理或者打靶實驗;需要同時測得靶丸的多個參數,不同參數的單獨測量,無法提供靶丸制備和核聚變反應過程中發生的結構變化現象和規律,并且效率低下、沒有統一的測量標準。靶丸屬于自支撐球形薄膜結構,曲面應力大、...
本文溫所研究的鍺膜厚度約300nm,導致其白光干涉輸出光譜只有一個干涉峰,此時常規基于相鄰干涉峰間距解調的方案(如峰峰值法等)將不再適用。為此,我們提出了一種基于單峰值波長移動的白光干涉測量方案,并設計搭建了膜厚測量系統。溫度測量實驗結果表明,峰值波長與溫度變化之間具有良好的線性關系。利用該測量方案,我們測得實驗用鍺膜的厚度為338.8nm,實驗誤差主要來自于溫度控制誤差和光源波長漂移。通過對納米級薄膜厚度的測量方案研究,實現了對鍺膜和金膜的厚度測量。本文主要的創新點是提出了白光干涉單峰值波長移動的解調方案,并將其應用于極短光程差的測量。廣泛應用于電子、半導體、光學、化學等領域,為研究和開發提...
為了提高靶丸內爆壓縮效率,需要確保靶丸所有幾何參數和物性參數都符合理想的球對稱狀態,因此需要對靶丸殼層厚度分布進行精密檢測。常用的測量手法有X射線顯微輻照法、激光差動共焦法和白光干涉法等。白光干涉法是以白光作為光源,分成入射到參考鏡和待測樣品的兩束光,在計算機管控下進行掃描和干涉信號分析,得到膜的厚度信息。該方法適用于靶丸殼層厚度的測量,但需要已知殼層材料的折射率,且難以實現靶丸殼層厚度分布的測量。總之,白光干涉膜厚儀是一種應用很廣的測量薄膜厚度的儀器。納米級膜厚儀傳感器品牌由于不同性質和形態的薄膜對測量量程和精度的需求不相同,因此多種測量方法各有優缺點,難以籠統評估。測量特點總結如表1-1所...
傅里葉變換是白光頻域解調方法中一種低精度的信號解調方法。早是由G.F.Fernando和T.Liu等人提出,用于低精度光纖法布里-珀羅傳感器的解調。因此,該解調方案的原理是通過傅里葉變換得到頻域的峰值頻率從而獲得光程差,進而得到待測物理量的信息。傅里葉變換解調方案的優點是解調速度較快,受干擾信號的影響較小。但是其測量精度較低。根據數字信號處理FFT(快速傅里葉變換)理論,若輸入光源波長范圍為λ1,λ2,則所測光程差的理論小分辨率為λ1λ2/(λ2?λ1),所以此方法主要應用于對解調精度要求不高的場合。傅里葉變換白光干涉法是對傅里葉變換法的改進。該方法總結起來就是對采集到的光譜信號做傅里葉變換,...
在白光干涉中,當光程差為零時,會出現零級干涉條紋。隨著光程差的增加,光源譜寬范圍內的每條譜線形成的干涉條紋之間會發生偏移,疊加后整體效果導致條紋對比度降低。白光干涉原理的測量系統精度高,可以進行測量。采用白光干涉原理的測量系統具有抗干擾能力強、動態范圍大、快速檢測和結構簡單緊湊等優點。雖然普通的激光干涉與白光干涉有所區別,但它們也具有許多共同之處。我們可以將白光看作一系列理想的單色光在時域上的相干疊加,而在頻域上觀察到的就是不同波長對應的干涉光強變化曲線。隨著技術的不斷進步和應用領域的擴展,白光干涉膜厚儀的性能和功能將得到進一步提高。防水膜厚儀制造公司干涉法測量可表述為:白光干涉光譜法主要利用...
干涉測量法是基于光的干涉原理實現對薄膜厚度測量的光學方法,是一種高精度的測量技術。采用光學干涉原理的測量系統一般具有結構簡單,成本低廉,穩定性好,抗干擾能力強,使用范圍廣等優點。對于大多數的干涉測量任務,都是通過薄膜表面和基底表面之間產生的干涉條紋的形狀和分布規律,來研究干涉裝置中待測物理量引入的光程差或者是位相差的變化,從而達到測量目的。光學干涉測量方法的測量精度可達到甚至優于納米量級,而利用外差干涉進行測量,其精度甚至可以達到10-3nm量級。根據所使用光源的不同,干涉測量方法又可以分為激光干涉測量和白光干涉測量兩大類。激光干涉測量的分辨率更高,但是不能實現對靜態信號的測量,只能測量輸出信...
由于靶丸自身特殊的特點和極端的實驗條件,使得靶丸參數的測試工作變得異常復雜。光學測量方法具有無損、非接觸、測量效率高、操作簡便等優勢,因此成為了測量靶丸參數的常用方式。目前常用于靶丸幾何參數或光學參數測量的方法有白光干涉法、光學顯微干涉法、激光差動共焦法等。然而,靶丸殼層折射率是沖擊波分時調控實驗研究中的重要參數,因此對其進行精密測量具有重要意義。 常用的折射率測量方法有橢圓偏振法、折射率匹配法、白光光譜法、布儒斯特角法等。白光干涉膜厚儀是一種可用于測量薄膜厚度的儀器,適用于透明薄膜和平行表面薄膜的測量。光干涉膜厚儀價格常用白光垂直掃描干涉系統的原理:入射的白光光束通過半反半透鏡進入到顯微干涉...
為了分析白光反射光譜的測量范圍,進行了不同壁厚的靶丸殼層白光反射光譜測量實驗。實驗結果顯示,對于殼層厚度為30μm的靶丸,其白光反射光譜各譜峰非常密集,干涉級次數值大;此外,由于靶丸殼層的吸收,壁厚較大的靶丸信號強度相對較弱。隨著靶丸殼層厚度的進一步增加,其白光反射光譜各譜峰將更加密集,難以實現對各干涉譜峰波長的測量。為實現較大厚度靶丸殼層厚度的白光反射光譜測量,需采用紅外寬譜光源和光譜探測器。對于殼層厚度為μm的靶丸,測量的波峰相對較少,容易實現殼層白光反射光譜譜峰波長的準確測量;隨著靶丸殼層厚度的進一步減小,兩干涉信號之間的光程差差異非常小,以至于光譜信號中只有一個干涉波峰,難以使用峰值探...
光纖白光干涉此次實驗所設計的解調系統是通過檢測干涉峰值的中心波長的移動實現的,所以光源中心波長的穩定性將對實驗結果產生很大的影響。實驗中我們所選用的光源是由INPHENIX公司生產的SLED光源,相對于一般的寬帶光源具有輸出功率高、覆蓋光譜范圍寬等特點。該光源采用+5V的直流供電,標定中心波長為1550nm,且其輸出功率在一定范圍內是可調的,驅動電流可以達到600mA。測量使用的是寬譜光源。光源的輸出光功率和中心波長的穩定性是光源選取時需要重點考慮的參數。精度高的白光干涉膜厚儀通常采用Michelson干涉儀的結構。光干涉膜厚儀哪個品牌好光纖白光干涉測量使用的是寬譜光源。在選擇光源時,需要重點...
干涉法測量可表述為:白光干涉光譜法主要利用光的干涉原理和光譜分光原理,利用光在不同波長處的干涉光強進行求解。光源出射的光經分光棱鏡分成兩束,其中一束入射到參考鏡,另一束入射到測量樣品表面,兩束光均發生反射并入射到分光棱鏡,此時這兩束光會發生干涉。干涉光經光譜儀采集得到白光光譜干涉信號,經由計算機處理數據、顯示結果變化,之后讀出厚度值或變化量。如何建立一套基于白光干涉法的晶圓膜厚測量裝置,對于晶圓膜厚測量具有重要意義,設備價格、空間大小、操作難易程度都是其影響因素。這種膜厚儀可以測量大氣壓下,1 nm到1mm范圍內的薄膜厚度。蘇州膜厚儀供應鏈由于不同性質和形態的薄膜對系統的測量量程和精度的需求不...
2e(n22一n12sin2i)1/2+δ’=kλ,k=1,2,3,4,5...(1) 2e(n22一n12sin2i)1/2+δ’=(2k+1)λ/2,k=0,1,2,3,4,...(2) 當膜的厚度e與波長A不可比擬時,有下列情況出現:(1)膜厚e遠遠大于波長^時,由于由同一波列分解出來的2列波的光程差已超過相干民度.因而不能相遇,故不能發生干涉…,沒有明紋或暗紋出現.(2)膜厚e遠遠小于波長^時,相干條件(1),(2)式中e一0,2相干光束之間的光程差已主要受半波損失d7的影響,而膜厚e和入射角i實際上對光程差已沒有貢獻.若半波損失∥存在,就發生相消干涉,反之,就發生相長...
通過白光干涉理論分析,詳細介紹了白光垂直掃描干涉技術和白光反射光譜技術的基本原理,并完成了應用于測量靶丸殼層折射率和厚度分布實驗裝置的設計和搭建。該實驗裝置由白光反射光譜探測模塊、靶丸吸附轉位模塊、三維運動模塊和氣浮隔震平臺等組成,能夠實現對靶丸的負壓吸附、靶丸位置的精密調整以及360°范圍的旋轉和特定角度下靶丸殼層白光反射光譜的測量。基于白光垂直掃描干涉和白光反射光譜的基本原理,提出了一種聯合使用的靶丸殼層折射率測量方法。該方法利用白光反射光譜測量靶丸殼層光學厚度,利用白光垂直掃描干涉技術測量光線通過靶丸殼層后的光程增量,從而可以計算得到靶丸的折射率和厚度數據。當光路長度增加,儀器的分辨率越...
微納制造技術的發展推動著檢測技術進入微納領域,微結構和薄膜結構作為微納器件的重要部分,在半導體、航天航空、醫學、現代制造等領域得到了廣泛應用。由于微小和精細的特征,傳統的檢測方法無法滿足要求。白光干涉法被廣泛應用于微納檢測領域,具有非接觸、無損傷、高精度等特點。另外,光譜測量具有高效率和測量速度快的優點。因此,這篇文章提出了一種白光干涉光譜測量方法,并構建了相應的測量系統。相比傳統的白光掃描干涉方法,這種方法具有更強的環境噪聲抵御能力,并且測量速度更快。白光干涉膜厚儀的工作原理是基于膜層與底材的反射率及其相位差,通過測量反射光的干涉來計算膜層厚度。防水膜厚儀廠家直銷價格極值法求解過程計算簡單,...
光學測厚方法結合了光學、機械、電子和計算機圖像處理技術,以光波長為測量基準,從原理上保證了納米級的測量精度。由于光學測厚是非接觸式的測量方法,因此被用于精密元件表面形貌及厚度的無損測量。針對薄膜厚度的光學測量方法,可以按照光吸收、透反射、偏振和干涉等不同光學原理分為分光光度法、橢圓偏振法、干涉法等多種測量方法。不同的測量方法各有優缺點和適用范圍。因此,有一些研究采用了多通道式復合測量法,結合多種測量方法,例如橢圓偏振法和光度法結合的光譜橢偏法,彩色共焦光譜干涉和白光顯微干涉的結合法等。工作原理是基于膜層與底材反射率及相位差,通過測量反射光的干涉來計算膜層厚度。納米級膜厚儀企業白光反射光譜探測模...
光譜法是一種以光的干涉效應為基礎的薄膜厚度測量方法,分為反射法和透射法兩種類型。入射光在薄膜-基底-薄膜界面上的反射和透射會引起多光束干涉效應,不同特性的薄膜材料的反射率和透過率曲線是不同的,并且在全光譜范圍內與厚度一一對應。因此,可以根據這種光譜特性來確定薄膜的厚度和光學參數。光譜法的優點是可以同時測量多個參數,并能有效地排除解的多值性,測量范圍廣,是一種無損測量技術。其缺點是對樣品薄膜表面條件的依賴性強,測量穩定性較差,因此測量精度不高,對于不同材料的薄膜需要使用不同波段的光源等。目前,這種方法主要用于有機薄膜的厚度測量。白光干涉膜厚儀是用于測量薄膜厚度的一種儀器,可用于透明薄膜和平行表面...