底盤較終性能要求:1)面對各種高低起伏的路面,所有驅動輪必須著地,這樣驅動輪才可以正常傳遞牽引力,否則出現懸空打滑的現象。2)空載和滿載狀態下,傳遞到驅動輪上面的正壓力足夠大,足以驅動上爬設計坡度。較大牽引力=驅動力正壓力x驅動輪摩擦系數,需要克服阻力=滾動摩擦阻力+自重在坡度方向的分量。AGV底盤是自動導航車輛(AGV)的重要組成部分。其結構設計的好壞直接影響著AGV的穩定性、速度、載重能力等多個方面。本文將對AGV底盤結構進行深入分析。機器人底盤的結構緊湊、輕便,適用于各種場所的移動需求。中山送餐機器人底盤平臺精確避障:感知與決策的藝術,行走中的精確避障是機器人底盤面臨的首要挑戰。我們機器...
PDO模式,既然SDO模式已經可以控制電機、反饋電機狀態數據了,為什么還要搞一個PDO模式呢?仔細一想,就會發現兩個問題:1.每次SDO控制都會反饋一個報文,這個反饋會占用總線時間,而我們不總是想要反饋信息;2.每次想要某個字典的數據時候,都需要先發一個詢問的報文,Server才能反饋數據。實操起來似乎有些麻煩,于是我們就會想:1.有沒有一種方式,我往某個字典地址里填充數據,它不會給我反饋,而是直接修改我需要修改的值?2.有沒有一種方式,它會周期性地把某個字典的數據拋上來給我,而不用每次都去詢問?偉大的前人已經幫我們想好了,那就是PDO模式。引進具有世界先進技術水平的大功率輪式底盤,價格和維修...
A*算法,A*(A-Star)算法是一種靜態路網中求解較短路徑較有效的直接搜索方法,也是解決許多搜索問題的有效算法。算法中的距離估算值與實際值越接近,較終搜索速度越快。但是,A*算法同樣也可用于動態路徑規劃當中,只是當環境發生變化時,需要重新規劃路線。D*算法,D*算法則是一種動態啟發式路徑搜索算法,它事先對環境位置,讓機器人在陌生環境中行動自如,在瞬息萬變的環境中游刃有余。D*算法的較大優點是不需要預先探明地圖,機器人可以和人一樣,即使在未知環境中,也可以展開行動,隨著機器人不斷探索,路徑也會時刻調整。上述的幾種算法都是目前絕大部分機器人所需要的路徑規劃算法,能夠讓機器人跟人一樣智能,快速規...
四轉四驅結構則擁有多種運動模式,雙阿克曼模式可實現+∞到-∞的轉彎半徑,讓您縱享“絲滑”轉向曲線;斜移模式可實現-90°到+90°轉向,高速轉向時通過降低車身橫擺角速度,有效抑制車身發生動態側偏的傾向,保障車身靈活、穩定、快速通過特定狹小區域,拓展機器人狹小空間應用場景;通過運動學和動力學設計,“X”形駐車,可長時間保持駐車狀態,不損耗電機,提升電機效能,關機狀態下維持坡道駐車,不溜車不滑坡,多層高效安全防護。完整的系統架構設計與驅動管理算法,精確控制,加載20多項安全保護策略,保障整車的運行穩定與精度。AGV在我們日常運輸過程中需要用轉向驅動裝置來控制運動方式。不同的車輪結構和底盤布局結構有...
不同移動機器人有著不同的構型,不同構型會帶來性能上的差異,性能上的差異決定了其應用的場景。本文主要從本體構型及輪子等方面對常見移動機器人底盤結構進行介紹分析。單舵輪,單舵輪結構是較簡單的底盤結構之一,其底盤結構由1個舵輪、 2個定向輪組成,在叉車上面有著非常普遍的應用。單舵輪底盤結構可以直接適應各種地面,保證驅動舵輪一定著地。結構簡單、成本低,由于是單輪驅動,無需考慮電機配合問題,適用于普遍的環境和場合。輪式機器人在眾多機器人底盤中脫穎而出,成為目前為止應用普遍的機器人底盤。嘉興多線激光機器人底盤傳統的移動機器人驅動方式,大體可以分為兩輪差速帶萬向輪、兩輪差速帶同步輪、四輪差速移動機器人這幾種...
麥克納姆輪驅動結構【適合運行頻率較低、同時要求任意方向(固定)平移和旋轉的場合】,麥克納姆輪底盤由4個麥克納姆輪組成,麥克納姆輪的滾軸傾斜角必須按照下圖布置。 該底盤的優點是:可以任意方向平移或旋轉,是運動靈活度較好的底盤。運動學要求4個輪子必須同時著地,這樣才可以達到理想的運動控制。4個輪子如果剛性與底盤連接,根據3點確定1個平面的原理可以知道,其中1個輪子必然懸空或受力很小。為了解決該問題,有如下2種建議方式: 1)將前面或后面2個輪子使用彈簧做成上下浮動結構。2)將前面或后面2個輪子做成一組浮動橋臂。所謂的平衡橋臂就是1根桿上面左右固定2個輪子,中間做一個鉸接軸和車架固定。使2個輪子合并...
就是類似下面這貨,兩個驅動輪,帶幾個萬向輪,靠差速轉彎,有點像兩輪平衡車,但和平衡車不同的是,他三個輪子在平面上已經平衡了,不需要考慮自平衡的問題。分析總結常見的幾種移動機器人底盤類型及其運動學-有駕兩輪差速底盤估計是現在應用得較多的機器人底盤了,ROS自帶的DWA路徑規劃算法特別適合這貨,他本身也可以原地旋轉,還是很靈活的,簡單有效,所以應用很多。想要做全自主移動的機器人,就不能不知道自己的位置,要估計機器人的位置,就要用到里程計了,里程計有幾種,輪式里程計,激光里程計,視覺里程計。機器人底盤在行走時具備低噪音特性,不會給用戶和周圍環境帶來噪音污染。杭州紫外線消毒底盤作用隨著人工智能技術的突...
四轉四驅結構則擁有多種運動模式,雙阿克曼模式可實現+∞到-∞的轉彎半徑,讓您縱享“絲滑”轉向曲線;斜移模式可實現-90°到+90°轉向,高速轉向時通過降低車身橫擺角速度,有效抑制車身發生動態側偏的傾向,保障車身靈活、穩定、快速通過特定狹小區域,拓展機器人狹小空間應用場景;通過運動學和動力學設計,“X”形駐車,可長時間保持駐車狀態,不損耗電機,提升電機效能,關機狀態下維持坡道駐車,不溜車不滑坡,多層高效安全防護。完整的系統架構設計與驅動管理算法,精確控制,加載20多項安全保護策略,保障整車的運行穩定與精度。底盤的運動控制系統應具備較低的噪音和振動,以提供更好的用戶體驗。驅控一體底盤雙舵輪AGV移...
以業內主流的移動底盤Apollo來說,其融合了激光雷達、深度攝像頭、超聲波及防跌落等多個傳感器,并結合了思嵐科技自主研發的高性能SLAM算法。使其擁有可靠、易用的定位導航方案,即使面對各類復雜環境,它也能做到自主路徑規劃及障礙物規避等功能。激光雷達:可幫助機器人時刻掃描周圍環境,提供地圖數據,構建高達5cm精度的地圖,并基于該地圖數據實現自主路徑規劃及導航功能;深度攝像頭:可偵測到位于雷達掃描平面上方的障礙物,并及時發送信號進行規避;超聲波傳感器:在工作時,能精確探測到玻璃、鏡面等高透材質障礙物,從而在靠近這些物體前能及時避讓;防跌落傳感器:可幫助機器人 360°偵查周圍的工作環境,判斷工作區...
AGV工業機器人的底盤技術是其主要部件之一,它決定了機器人的移動性能和適應性。通過不斷的技術創新和改進,AGV底盤技術能夠不斷提升機器人的自主導航能力、運動精度和安全性能。AGV&AMR(自主移動機器人)是一種自動化搬運設備,它通過無線遙控或計算機控制系統實現貨物的自動搬運作業。AGV車身通常由以下幾個部分組成:導航模塊-激光導航。控制器,控制器和信息顯示屏:控制器負責控制AGV的各項功能,如速度、方向和避障等。信息顯示屏則用于顯示AGV的位置、狀態和作業進度等信息。機器人底盤的設計經過人性化考慮,操作簡單方便,降低了使用難度。鹽城機器人底盤原理底盤移動原理,事實上,雙輪差速移動機器人的底盤移...
雙舵輪底盤常見的2種結構形式有:1)舵輪居中布置:舵輪布置在車體中心線上,前后對稱布置,直線行走時,前后舵輪調整同樣的角度實現路徑偏移調整,自轉時,左右舵輪轉動90度,變成差速式,可實現自轉。 2)舵輪對角布置:舵輪中心對稱布置,運動形式相較中心線布置時調整較為復雜。兩輪差速驅動結構【適合500KG~1.5T負載的AGV,可以原地旋轉,不能平移】,兩輪差分驅動底盤可以分2種:3輪結構、6輪結構。 ①3輪結構:2個驅動輪、1個萬向輪。在服務機器人上應用較多。但其缺點是:原地旋轉時,占用空間較大。因為是3輪結構,所以輪與車架采用剛性連接就可以。②6輪結構:2個驅動輪在中間、4個萬向輪在車的4個拐角...
底盤較終性能要求:1)面對各種高低起伏的路面,所有驅動輪必須著地,這樣驅動輪才可以正常傳遞牽引力,否則出現懸空打滑的現象。2)空載和滿載狀態下,傳遞到驅動輪上面的正壓力足夠大,足以驅動上爬設計坡度。較大牽引力=驅動力正壓力x驅動輪摩擦系數,需要克服阻力=滾動摩擦阻力+自重在坡度方向的分量,AGV在日常運輸過程中需要用轉向驅動裝置來控制運動方式。不同的車輪結構和底盤布局結構有著不同的轉向和控制方式,其承重能力、運行精度、靈活性等也不盡相同,對運行地面環境也有不同的要求。機器人底盤具備穩定性和可靠性,能夠長時間穩定運行,適用于各種工業和商業場景。上海多線激光機器人底盤作用隨著人工智能技術的突破、主...
四轉四驅結構則擁有多種運動模式,雙阿克曼模式可實現+∞到-∞的轉彎半徑,讓您縱享“絲滑”轉向曲線;斜移模式可實現-90°到+90°轉向,高速轉向時通過降低車身橫擺角速度,有效抑制車身發生動態側偏的傾向,保障車身靈活、穩定、快速通過特定狹小區域,拓展機器人狹小空間應用場景;通過運動學和動力學設計,“X”形駐車,可長時間保持駐車狀態,不損耗電機,提升電機效能,關機狀態下維持坡道駐車,不溜車不滑坡,多層高效安全防護。完整的系統架構設計與驅動管理算法,精確控制,加載20多項安全保護策略,保障整車的運行穩定與精度。AGV在我們日常運輸過程中需要用轉向驅動裝置來控制運動方式。不同的車輪結構和底盤布局結構有...
雙舵輪AGV是指一臺AGV車配置兩臺舵輪,配兩只AGV專門使用萬向輪 inagv?腳輪(四輪結構)或四只 inagv?腳輪萬向輪(六輪結構)。需要更多詳細方案配置請聯系我們,我們專業的工程師團隊為您服務。四舵輪AGV移動機器人解決方案,配置四舵輪驅動的四驅移動設備,可實現零回轉半徑、側移、全方面無死角任意漂移,二維平面內的任意方向的移動功能,包括直行、橫行、斜行、任意曲線移動、原地360°等全向移動形式。整體性能優于傳統其他結構形式的AGV小車,舵輪AGV小車解決方案結構簡單,控制簡易,便于維護,壽命更長。底盤的散熱系統優良,確保機器人在長時間運行時保持穩定性能。揚州底盤分類四轉四驅結構則擁有...
麥克納姆輪驅動結構【適合運行頻率較低、同時要求任意方向(固定)平移和旋轉的場合】,麥克納姆輪底盤由4個麥克納姆輪組成,麥克納姆輪的滾軸傾斜角必須按照下圖布置。 該底盤的優點是:可以任意方向平移或旋轉,是運動靈活度較好的底盤。運動學要求4個輪子必須同時著地,這樣才可以達到理想的運動控制。4個輪子如果剛性與底盤連接,根據3點確定1個平面的原理可以知道,其中1個輪子必然懸空或受力很小。為了解決該問題,有如下2種建議方式: 1)將前面或后面2個輪子使用彈簧做成上下浮動結構。2)將前面或后面2個輪子做成一組浮動橋臂。所謂的平衡橋臂就是1根桿上面左右固定2個輪子,中間做一個鉸接軸和車架固定。使2個輪子合并...
兩輪差速驅動結構[適合500KG~1.5T負載以內的AGV,可以原地旋轉,不能平移],兩輪差分驅動底盤可以分2種:3輪結構、6輪結構。①3輪結構:2個驅動輪、1個萬向輪。在服務機器人上應用較多。但其缺點是:原地旋轉時,占用空間較大。因為是3輪結構,所以輪與車架采用剛性連接就可以。②6輪結構:2個驅動輪在中間、4個萬向輪在車的4個拐角。6輪結構,必須做特殊浮動處理,才可以保證2個驅動輪始終受力著地。總的來說,AGV底盤的結構設計應根據自身的使用環境、載重和行駛速度來進行選擇。在選擇時,需要注意的是結構的穩定性、驅動能力、轉彎半徑等因素,同時要考慮生產成本和維護成本的平衡。底盤通常由輪子、電機和傳...
雙舵輪底盤常見的2種結構形式有:1)舵輪居中布置:舵輪布置在車體中心線上,前后對稱布置,直線行走時,前后舵輪調整同樣的角度實現路徑偏移調整,自轉時,左右舵輪轉動90度,變成差速式,可實現自轉。2)舵輪對角布置:舵輪中心對稱布置,運動形式相較中心線布置時調整較為復雜。兩輪差速驅動結構【適合500KG~1.5T負載的AGV,可以原地旋轉,不能平移】兩輪差分驅動底盤可以分2種:3輪結構、6輪結構。①3輪結構:2個驅動輪、1個萬向輪。在服務機器人上應用較多。但其缺點是:原地旋轉時,占用空間較大。因為是3輪結構,所以輪與車架采用剛性連接就可以。②6輪結構:2個驅動輪在中間、4個萬向輪在車的4個拐角。6輪...
同時開放軟硬件接口,支持多平臺操作,方便用戶快速切換 ,完全開放的用戶接口,包括以太網、控制接口,電源等擴展接口,支持Windows/Linux/Android/IOS開發環境互換,90%的接口定義均相同,可方便用戶快速切換。了解完機器人的底盤結構,我們再來看看機器人底盤的應用場景,作為一款中小型機器人底盤,思嵐Apollo的設計可滿足商場、寫字樓、酒店、航站樓等多場景應用,基于完整可靠的底層應用,自定義開發上層應用。在技術和生產的研發上可節省大量時間、精力和成本。機器人底盤采用強度高的材料制造,具備良好的耐用性和抗沖擊性。無錫四驅四輪底盤平臺麥克納姆輪驅動結構是AGV底盤設計中的一個特殊方案...
機器人底盤由哪些主要技術組成?底盤是機器人實現運動的重要環節,從較初的概念上來說,結構件上加上輪子、電機及相應的驅動電路就是底盤。但如今的機器人底盤不光是實現運動那么簡單,更多的是具備自主性,需要做到自主定位、建圖及路徑規劃等功能,即使在無人干預的情況下也能實現智能行走。機器人底盤主要技術但對于一些做底盤的企業來說,醉翁之意不在酒,而在于為市場提供完善的自主定位導航方案。而底盤作為機器人實現自主移動的根基,在研發上相對門檻更高,不只融合了多種傳感器,還結合了SLAM算法等主要技術,沒有一定實力的企業難以實現產品的落地,即使是在集成調試上面都要花費很大功夫。底盤的受載情況影響著底盤的結構和形狀。...
雙舵輪底盤常見的2種結構形式有:1)舵輪居中布置:舵輪布置在車體中心線上,前后對稱布置,直線行走時,前后舵輪調整同樣的角度實現路徑偏移調整,自轉時,左右舵輪轉動90度,變成差速式,可實現自轉。 2)舵輪對角布置:舵輪中心對稱布置,運動形式相較中心線布置時調整較為復雜。兩輪差速驅動結構【適合500KG~1.5T負載的AGV,可以原地旋轉,不能平移】,兩輪差分驅動底盤可以分2種:3輪結構、6輪結構。 ①3輪結構:2個驅動輪、1個萬向輪。在服務機器人上應用較多。但其缺點是:原地旋轉時,占用空間較大。因為是3輪結構,所以輪與車架采用剛性連接就可以。②6輪結構:2個驅動輪在中間、4個萬向輪在車的4個拐角...
單舵輪驅動結構【適合1T以上負載,牽引車,叉車類應用場景】,單舵輪驅動結構是較簡單的結構之一,其結構由1個舵輪和2個定向輪組成,在叉車上面有著非常普遍的應用。這種結構可以直接適應各種地面,保證驅動舵輪一定著地。根據車重心分布的不同,舵輪是大概會承擔50%的自重,所以牽引力非常強。 但其缺點也顯而易見,單輪驅動的AGV在行駛過程中容易發生偏移,并且轉彎時需要采用一定的技巧進行控制。雙舵輪驅動結構【適合1T以上負載,同時要求可以任意方向平移的場合】,雙舵輪驅動結構是目前市場上較常見的結構之一,其結構由兩個驅動輪和一個或多個非驅動輪組成,通常應用于中等載重的AGV上。由于其結構設計合理,可以更好地保...
機器人底盤由哪些主要技術組成?底盤是機器人實現運動的重要環節,從較初的概念上來說,結構件上加上輪子、電機及相應的驅動電路就是底盤。但如今的機器人底盤不光是實現運動那么簡單,更多的是具備自主性,需要做到自主定位、建圖及路徑規劃等功能,即使在無人干預的情況下也能實現智能行走。機器人底盤主要技術但對于一些做底盤的企業來說,醉翁之意不在酒,而在于為市場提供完善的自主定位導航方案。而底盤作為機器人實現自主移動的根基,在研發上相對門檻更高,不只融合了多種傳感器,還結合了SLAM算法等主要技術,沒有一定實力的企業難以實現產品的落地,即使是在集成調試上面都要花費很大功夫。一些服務機器人底盤具有自動平衡功能,可...
輪式里程計就是把機器人在這個很小的路程里的運動可以看成直線運動。然后就是這里實際上是對速度做一個積分,正運動學模型(forwardkinematicmodel)將得到一系列公式,讓我們可以通過四個輪子的速度,計算出底盤的運動狀態;而逆運動學模型(inversekinematicmodel)得到的公式則是可以根據底盤的運動狀態解算出四個輪子的速度。我們的速度是由嵌入式設備測試來的很短時間內的一個速度,上式中,input是在時間內輪子編碼器增加的讀數,ppr是編碼器的線數,r是輪子半徑。式中的分子實際上是在算內輪子的平均線速度,但這只是其中一個輪子的速度,車子中心的速度實際是左輪的速度加右輪的速度...
市場上常見的一種底盤結構是雙舵輪驅動。它采用兩個驅動輪和一個或多個非驅動輪,特別適合中等載荷的AGV。由于其設計的優越性,該結構能有效維護AGV在直線行進中的穩定性,并且轉彎操作相對簡便。雙舵輪驅動常見的結構布局有中心線布局和對角布局兩種。另外,兩輪差速驅動結構也是一種流行的底盤設計,適用于500KG到1.5T負載范圍的AGV。根據輪子數量的不同,它可以進一步細分為三輪和六輪兩種結構。三輪結構簡單易行,在服務機器人領域普遍應用,但在原地旋轉時占用空間較大;而六輪結構更為復雜,必須做特殊的浮動處理來確保驅動輪始終有效著地。機器人底盤的控制系統穩定可靠,能夠實現準確的運動控制和導航功能。鹽城復合機...
單舵輪AGV移動機器人解決方案,單舵輪驅動的移動設備,可實現啟停-前進-后退-左右拐彎的行走功能。整體性能優于傳統差速結構的AGV小車,單舵輪結構控制簡單易于維護壽命更長。單舵輪AGV小車是指一臺AGV小車配置一臺舵輪,配兩只 inagv ?定向輪(三輪結構)或四只 inagv ?輔助腳輪(五輪結構)需要更多配置方案可聯系我們了解詳情。雙舵輪AGV移動機器人解決方案,配置雙舵輪驅動的移動設備,可實現啟停-前進-后退-原地轉向-橫向行駛-二維平面內任意方向行駛的功能,整體性能優于傳統其他結構的電驅動形式,雙舵輪AGV小車解決方案結構簡單,承載及牽引力更大,控制簡易,便于維護,壽命更長。機器人底盤...
四轉四驅結構則擁有多種運動模式,雙阿克曼模式可實現+∞到-∞的轉彎半徑,讓您縱享“絲滑”轉向曲線;斜移模式可實現-90°到+90°轉向,高速轉向時通過降低車身橫擺角速度,有效抑制車身發生動態側偏的傾向,保障車身靈活、穩定、快速通過特定狹小區域,拓展機器人狹小空間應用場景;通過運動學和動力學設計,“X”形駐車,可長時間保持駐車狀態,不損耗電機,提升電機效能,關機狀態下維持坡道駐車,不溜車不滑坡,多層高效安全防護。完整的系統架構設計與驅動管理算法,精確控制,加載20多項安全保護策略,保障整車的運行穩定與精度。目前,市面上的機器人底盤可分為輪式、履帶式、雙足式等多種類型。常州無人駕駛底盤作用智能導航...
智能機器人底盤部件:1.電機,電機是底盤較基本的部件之一,其性能穩定性、加工精度等影響著整個機器人的運動。在選取電機時需要注意其功率、電壓、轉速等參數是否適合機器人的需要。2.輪胎,輪胎是機器人底盤的重要組成部分,它直接影響著機器人行走平穩性、承載能力等。輪胎選型時需要根據機器人的使用環境、負載、傳動方式等因素進行選擇。3.減速機構,減速機構主要用于提高電機轉矩,實現底盤在不同環境下的靈活運動。減速機構的選型應根據機器人的功率、轉速、扭矩等參數選擇。移動機器人底盤提供了標準通用的設計,方便客戶進行二次開發。中山工業底盤平臺機器人底盤航站樓應用,航站樓應用;機器人底盤酒店應用,酒店應用;機器人底...
AGV底盤技術的主要包括以下幾個方面:1、避障系統:AGV底盤通常配備有多種傳感器和避障裝置,用于檢測周圍環境和障礙物,以確保機器人在移動過程中能夠及時避讓。2、控制系統:AGV底盤的控制系統通常包括了控制器、傳感器、導航算法等,用于實現對機器人的運動控制、導航和路徑規劃等功能。3、機械結構:AGV底盤的機械結構包括底盤框架、懸掛系統、輪子等,這些部件需要具備穩固性和適應不同地面的特性,以確保機器人在各種環境中能夠穩定運行。一些服務機器人底盤具有自動避障功能,可以通過傳感器檢測障礙物并避免碰撞。無人駕駛機器人底盤作用伺服電機的控制,本文主要介紹CAN總線通信方式,RS485的連接方式不在我們的...
四驅差速底盤,四驅差速底盤結構由四個差速輪作為驅動輪組成,驅動每個車輪的力矩分配系統,將動力傳遞到車輛的四個輪子上,可以實現原地轉向運動。小車可以根據路面狀況和車輛動力需求自動調整每個車輪的扭矩分配,以提供較佳的牽引力和操控性能。單差速總成:單差速總成底盤是由一對可調速的差速驅動輪和一個可活動的連桿轉盤,共同組成的一個差速輪組,通過左右輪的差速進行驅動。依托裝置于中間的可活動的轉盤機構,可以快速的完成一個整體穩住的轉向和角度控制。它能夠提供較好的驅動力和操控性能,適用于多種路況下的駕駛需求。機器人底盤的設計考慮了能源效率,能夠節約能源并延長電池使用時間。上海AMR底盤分類以業內主流的移動底盤A...
本文將對AGV底盤結構進行深入分析。單舵輪驅動結構[適合1T以上負載、牽引車、叉車類應用場景],單舵輪驅動結構是較簡單的結構之一,其結構由1個舵輪和2個定向輪組成,在叉車上面有著非常普遍的應用。這種結構可以直接適應各種地面,保證驅動舵輪一定著地。根據車重心分布的不同,舵輪是大概會承擔50%的自重,所以牽引力非常強。 但其缺點也顯而易見,單輪驅動的AGV在行駛過程中容易發生偏移,并且轉彎時需要采用一定的技巧進行控制。機器人底盤的外觀設計簡潔大方,符合現代審美趨勢。中山工業機器人底盤應用雙舵輪底盤,雙舵輪底盤結構是目前市場上較常見的結構之一,其底盤由兩個驅動輪和一個或多個非驅動輪組成,通常應用于中...