為了在航空航天、汽車、焊接工藝等領域的材料研究中取得重大進展,材料研究人員正在致力于研發更輕、更堅固、更耐高溫的材料。這些材料的研發不只可以提高產品的性能和可靠性,還可以為科研實驗人員提供可靠的非接觸式應變測量解決方案,從而增強科研實驗室的創新能力,以滿足應用材料科學快速發展的需求。在高溫材料測試實驗室中,對新材料的性能測試是非常重要的。因此,在測量設備、數據收集和分析計算等方面,實驗數據的高可靠性至關重要。光學非接觸應變測量技術是一種非常有效的方法,可以實時、準確地測量材料在高溫環境下的應變情況。這種測量方法不只可以避免傳統接觸式測量方法可能引起的干擾和損傷,還可以提供更全部、更精確的數據。光學非接觸應變測量技術基于光學原理,通過測量材料表面的形變來推導出應變信息。這種方法可以應用于各種材料,包括金屬、陶瓷、復合材料等,并且可以在高溫環境下進行測量。通過使用高分辨率的相機和先進的圖像處理算法,可以實現對材料表面形變的精確測量,從而得到準確的應變數據。數據處理是光學非接觸應變測量中非常重要的一步,能夠提取有用信息并對測量結果進行分析和解釋。四川VIC-2D非接觸應變系統
光學非接觸應變測量方法是一種用于測量物體應變的技術。其中,光纖光柵傳感器和激光多普勒測振法是兩種常用的光學測量方法。光纖光柵傳感器是一種基于光纖光柵原理的光學測量方法。它通過在光纖中引入光柵結構,利用光柵對光信號的散射和反射來測量應變。當物體受到應變時,光纖中的光柵結構會發生微小的形變,從而改變光信號的散射和反射特性。通過測量光信號的變化,可以準確地計算出物體的應變情況。光纖光柵傳感器具有高靈敏度、高精度和遠程測量等優點,適用于對復雜結構和不便接觸的物體進行應變測量。激光多普勒測振法是一種基于多普勒效應的光學測量方法。它利用激光光源照射在物體表面上,通過對反射光的頻率變化進行分析來測量應變。當物體受到應變時,物體表面的運動速度會發生變化,從而導致反射光的頻率發生變化。通過測量反射光的頻率變化,可以準確地計算出物體的應變情況。激光多普勒測振法具有高精度和高靈敏度等優點,適用于對動態應變進行測量。這兩種光學非接觸應變測量方法在工程領域中得到了普遍的應用。它們不只可以提供準確的應變測量結果,還可以避免對物體造成損傷或干擾。浙江VIC-Gauge 2D視頻引伸計應變測量系統與傳統的接觸式應變測量方法相比,光學非接觸應變測量不需要直接接觸物體表面,避免了對物體的破壞。
通過采用相似材料結構模型實驗的方法,我們可以研究鋼筋混凝土框架結構在強烈地震作用下的行為。利用數字散斑的光學非接觸應變測量方式,我們可以獲取模型表面的三維全場位移和應變數據。然而,傳統的應變計作為應變測量工具存在一些問題。首先,應變計的貼片過程非常繁瑣,需要精確地將應變計貼在被測物體表面。這個過程需要耗費大量時間和精力,并且容易出現貼片不牢固的情況,從而影響測量精度。其次,應變計的測量精度嚴重依賴于貼片的質量。如果貼片不完全貼合或存在空隙,就會導致測量結果的偏差。這對于需要高精度測量的實驗來說是一個嚴重的問題。此外,應變計對環境溫度非常敏感。溫度的變化會導致應變計的性能發生變化,從而影響測量結果的準確性。因此,在進行實驗時需要嚴格控制環境溫度,增加了實驗的難度和復雜性。另外,應變計無法進行全場測量,只能測量貼片位置的應變。這意味著我們無法捕捉到關鍵位置的變形出現的初始位置。當框架結構發生較大范圍的變形或斷裂時,應變計容易損壞,從而影響測試數據的質量。
光學應變測量是一種常用的非接觸式測量方法,主要用于測量物體的應變分布。它可以應用于材料力學、結構工程、生物醫學等領域,為研究物體的力學性質和結構變化提供重要的定量信息。光學應變測量的原理是利用光學干涉的原理,通過測量物體表面的光學路徑差來獲得應變信息。當物體受到外力作用時,會引起物體表面的形變,從而改變光的傳播路徑,進而產生干涉現象。通過測量干涉圖案的變化,可以得到物體表面的應變分布。光學應變測量的優點是非接觸式測量,不會對被測物體造成損傷,同時具有高精度和高靈敏度。它可以實時監測物體的應變狀態,對于研究材料的力學性質和結構變化具有重要意義。在結構工程中,可以用于監測建筑物、橋梁等結構的應變分布,以及評估其安全性能。在生物醫學領域,可以用于測量人體組織的應變分布,研究生物力學特性和疾病診斷。與光學應變測量相比,光學干涉測量主要用于測量物體表面的形變。它可以應用于光學元件的制造、光學鏡面的檢測、光學薄膜的質量控制等領域。光學干涉測量通過測量物體表面的形變來獲得物體形狀和表面質量的定性信息。它可以檢測物體表面的微小形變,對于研究物體的形狀變化和表面質量具有重要意義。光學非接觸應變測量利用全息干涉術或激光散斑術將物體表面的應變信息轉化為光的干涉或散斑圖案。
在當今注重安全的社會中,應變測量變得越來越重要。應變是一個關鍵的物理量,它描述了物體在外力和非均勻溫度場等因素作用下局部的相對變形程度。應變測量是機械結構和機械強度分析中的重要手段,也是確保機械設備正常運行的關鍵方法。在航空航天、工程機械、通用機械以及道路交通等領域,應變測量都得到了普遍的應用。應變測量有多種方法,每種方法都對應著不同的傳感器。常見的應變測量傳感器包括電阻應變片、振弦式應變傳感器、手持應變儀、千分表引伸計和光纖布拉格光柵傳感器等。其中,電阻應變片是應用較普遍的一種,因為它具有高靈敏度、快速響應、低成本、便于安裝、輕巧和小標距等特點。光學非接觸應變測量是一種新興的測量方法,它利用光學原理來測量物體的應變。這種方法不需要直接接觸被測物體,因此可以避免傳統測量方法中可能引起的干擾和損傷。光學非接觸應變測量主要依靠光纖布拉格光柵傳感器來實現。光纖布拉格光柵傳感器是一種基于光纖中的布拉格光柵原理的傳感器,它可以通過測量光纖中的光頻移來確定應變的大小。全息干涉術和激光散斑術是常用的光學非接觸應變測量方法,具有高精度、高靈敏度和非接觸的特點。廣東光學非接觸變形測量
現代光學應變測量設備利用高精度的光學元件和先進的信號處理技術,可以達到亞微米級的測量精度。四川VIC-2D非接觸應變系統
在塑性材料研究中,三維應變測量技術是一項非常重要的工具。這項技術采用可移動的非接觸測量頭,可以方便地應用于靜態、動態、高速和高溫等測量環境,并能詳細測量材料的復雜特性。與傳統的應變計測量相比,三維應變測量技術能夠提供更詳細的數據信息,可用于數字仿真的更詳細對比和評價。光學三維測量技術結合了光、電、計算機等技術的優勢,具有非接觸性、無破壞性、高精度和高分辨率以及快速測量的特點,在彈性塑性材料等特殊測量領域備受關注。該技術通過使用光學傳感器和相機等設備,可以實時捕捉材料表面的形變信息,并將其轉化為數字化的三維應變數據。在材料的力學實驗中,三維應變測量技術可以應用于多種實驗方法,如杯突實驗、抗拉實驗、拉彎實驗和剪切實驗。通過測量材料在不同加載條件下的應變分布,可以深入了解材料的力學性能和變形行為。這些數據對于材料的設計和優化具有重要意義。四川VIC-2D非接觸應變系統