一種低損耗穩相同軸射頻電纜,由內向外依次設置的內導體、絕緣層、內屏蔽層、外屏蔽層和防護套;本實用新型通過將絕緣層設置為多層繞包結構,相鄰層之間通過粘合劑層連接,使得電纜外徑和絕緣常數穩定;同時螺旋設置的粘合劑層進一步增強了電纜的抗扭矩能力;穩相間隙與內屏蔽層的鍍銀銅帶適配嵌合,增加了絕緣層與屏蔽層之間阻力,不易產生相對位移,穩定性好;屏蔽層設置為鍍銀銅帶和鍍銀銅線編織層相結合,降低電纜損耗,屏蔽效率更高,同時高密度編織層增加了電纜的抗拉強度;防護套具有較高的環境適應性,其內層的抗扭矩層具有較強的抗扭矩能力,與外層防護層配合,對電纜的保護效果好射頻電纜的鋪設需考慮干擾問題。廣東RG同軸電纜
泄漏損耗是信號根據射頻電纜屏蔽的編織間隙輻射出去的信號。它一樣導致信號在傳輸過程中的能量損失。它是高頻傳輸中不可忽略的問題。因此,電纜的編織覆蓋率不可以過低。總之,同軸電纜對信號的傳輸損耗具備各種要素。它的至終損失基于上述各種損失的總和,可以使用網絡分析儀測試這種類型的綜合損失。電纜的直流電阻只在低頻時才在信號衰減中起主要作用。在高頻下,信號衰減主要取決于集膚效應和介電損耗。隨著同軸電纜頻率的增加,信號衰減呈指數增加。因此,電纜的傳輸損耗對于考慮高頻損耗很重要。除了電纜的設計,生產和加工之外,使用過程中不正確的構造也將對電纜的正常使用產生重大影響黑龍江射頻連接器射頻電纜的安裝簡便。
在數據信號傳輸過程中,射頻電纜的衰減是表示電纜有效的傳送射頻信號的能力,它由介質損耗、導體(銅)損耗和輻射損耗三部分組成。大部分的損耗轉換為熱能。導體的尺寸越大,損耗越小;而頻率越高,則介質損耗越大。另外,溫度的增加會使導體電阻和介質功率因素的增加,因此也會導致損耗的增加。射頻信息泄漏損耗是一個不容忽視的問題,這些損失在下面進行了分析。介質損耗是同軸電纜中心導體與外導體間的電介質(絕緣體)對信號的損耗。度量電介質的一個重要參數是介電常數。它是指在同一電容器中用某一物質作為電介質時的電容與其中為真空時電容的比值稱為該物質的“介電常數”。介電常數通常隨溫度和介質中傳播的電磁波的頻率而發生變化。同軸電纜的內外導體相等于電容的兩極。因為實用中的電纜電介質有電阻存在,介電常數通常超過1。因而,傳輸中對信號的損耗是必定的。介電常數的大小與材料和加工工藝(如發泡)有關。介電常數越大,對信號的損耗也越大。溫度越高,頻率越高,介電損耗越大
射頻電纜故障的檢測方法:用測試儀查找故障點,電纜故障測試儀是測量電纜故障的一種數字儀表,它利用傳輸線的反射原理,在時域范圍內就可定電纜的故障點。使用方便,測量迅速。直觀、準確、操作簡單。可測電纜的開路、短路及阻抗失配等故障的位置和性質,測量電纜的長度和電纜中信號傳播的速度,對傳輸電視信號的射頻電纜出現的開路、短路和間接短路故障能迅速的判斷出來。要想準確的判斷故障電纜部位,事先應測出該電纜的傳播速度。其方法是:先將一根(50-100米)同型號已知長度的電纜按儀器使用說明操作,測出該電纜的傳播速度,根據被測的傳播速度,對故障電纜進行以下檢測射頻電纜的價格因性能而異。
射頻電纜的主要指標有:1、駐波比(VSWR):在射頻和微波系統中,至大功率傳輸和至小信號反射取決于射頻電纜的特性阻抗和系統中其它部件的匹配。射頻電纜的阻抗變化將會引起信號的反射,這種反射會導致入射波能量的損失。反射的大小可以用電壓駐波比(VSWR)來表達,其定義是入射和反射電壓之比。VSWR越小,說明電纜生產的一致性越好。典型的微波電纜組件的VSWR在1.1~1.5之間。2、衰減(插入損耗):表示電纜有效的傳送射頻信號的能力。3、平均功率容量:指電纜消耗由電阻和介質損耗所產生的熱能的能力。4、傳播速度:是指信號在電纜中傳輸的速度和光速的比值,和介質的介電常數的根號呈反比關系。介電常數越小,則傳播速度越接近光速信號衰減是評估其性能的指標之一。甘肅高頻連接器
其絕緣性能對信號傳輸至關重要。廣東RG同軸電纜
射頻電纜的電氣參數:(1)射頻電纜的特性阻抗:射頻電纜的平均特性阻抗為50±2Ω,沿單根射頻電纜的阻抗的周期性變化為正弦波,中心平均值±3Ω,其長度小于2米。(2)射頻電纜的衰減:一般指500米長的電纜段的衰減值。當用10MHz的正弦波進行測量時,它的值不超過8.5db(17db/公里);而用5MHz的正弦波進行測量時,它的值不超過6.0db(12db/公里)。(3)射頻電纜的傳播速度:需要的傳播速度為0.77C(C為光速)。(4)射頻電纜直流回路電阻:電纜的中心導體的電阻與屏蔽層的電阻之和不超過10毫歐/米(在20℃下測量)廣東RG同軸電纜