IGBT單管和IGBT功率模塊PIM、IPM的區別是什么?作者:海飛樂技術時間:2018-04-1218:47IGBT功率模塊采用封裝技術集成驅動、保護電路和高能芯片一起的模塊,已經從復合功率模塊PIM發展到了智能功率模塊IPM、電力電子積木PEBB、電力模塊IPEM等。IGBT單管和IGBT功率模塊的定義不同:IGBT單管:分立IGBT,封裝較模塊小,電流通常在50A以下,常見有TO247、TO3P等封裝。IGBT模塊:塊化封裝就是將多個IGBT集成封裝在一起,即模塊化封裝的IGBT芯片。常見的有1in1,2in1,6in1等。PIM模塊:集成整流橋+制動單元(PFC)+三相逆變(IGBT橋);IPM模塊:即智能功率模塊,集成門級驅動及保護功能(熱保護,過流保護等)的IGBT模塊。IGBT單管和IGBT功率模塊的結構不同IGBT單管為一個N溝道增強型絕緣柵雙極晶體管結構,N+區稱為源區,附于其上的電極稱為源極。P+區稱為漏區。器件的控制區為柵區,附于其上的電極稱為柵極。溝道在緊靠柵區邊界形成。在漏、源之間的P型區(包括P+和P一區)(溝道在該區域形成),稱為亞溝道區(Subchannelregion)。而在漏區另一側的P+區稱為漏注入區(Draininjector),它是IGBT特有的功能區,與漏區和亞溝道區一起形成PNP雙極晶體管,起發射極的作用。大家選擇的時候,盡量選擇新一代的IGBT,芯片技術有所改進,IGBT的內核溫度將有很大的提升。廣西功率半導體IGBT模塊庫存充足
igbt模塊結溫變化會影響哪些因素?結溫是指IGBT模塊內部結構的溫度,它的變化會影響IGBT模塊的電性能、可靠性和壽命等多個方面。本文將從以下幾個方面詳細介紹IGBT模塊結溫變化對模塊性能的影響。1.IGBT的導通損耗和開關損耗當IGBT模塊結溫升高時,其內部電阻變小,導通損耗會減小,而開關損耗則會增加。當結溫升高到一定程度時,開關損耗的增加會超過導通損耗的減小,導致總損耗增加。因此,IGBT模塊的結溫升高會導致模塊的損耗增加,降低模塊的效率。2.熱應力和機械應力IGBT模塊的結溫升高會導致模塊內部產生熱應力和機械應力。熱應力是由于熱膨脹引起的,會導致模塊內部元器件的變形和應力集中,從而降低模塊的可靠性和壽命。機械應力則是由于模塊內部結構的膨脹和收縮引起的,會導致模塊的包裝材料產生應力,從而降低模塊的可靠性和壽命。3.溫度對IGBT的壽命的影響IGBT模塊的結溫升高會導致模塊內部元器件的老化速度加快,從而降低模塊的壽命。IGBT的壽命是與結溫密切相關的,當結溫升高到一定程度時,IGBT的壽命會急劇降低。山東功率半導體IGBT模塊廠家直供。第三代IGBT能耐150度的極限高溫。
墓他3組上橋臂的控制信號輸入電路與圖2相同,但3組15V直流電源應分別供電,而下橋臂的4組則共用一個15V直流電源。圖2控制信號輸入電路(2)緩沖電路緩沖電路(阻容吸收電路)主要用于抑制模塊內部的IGBT單元的過電壓和du/出或者過電流和di/dt,同時減小IGBT的開關損耗。由于緩沖電路所需的電阻、電容的功率、體積都較大,所以在IGBT模塊內部并沒有專門集成該部分電路,因此,在實際的系統中一定要設計緩沖電路,通過緩沖電路的電容可把過電壓的電磁能量變成靜電能量儲存起來。緩沖電路的電阻可防止電容與電感產生諧振。如果沒有緩沖電路,器件在開通時電流會迅速上升,di/dt也很大,關斷時du/dt很大,并會出現很高的過電壓,極易造成模塊內部IGBT器件損壞。圖3給出了一個典型的緩沖電路;有關阻值與電容大小的設計可根據具體系統來設定不同的參數。
怎樣檢測變頻器逆變模塊?1)判斷晶閘管極性及好壞的方法選擇指針萬用表R×100Ω或R×1KΩ檔分別測量晶閘管的任兩個極之間的正反向電阻,其中一極與其他兩極之間的正反向電阻均為無窮大,則判定該極為陽極(A)。然后選擇指針萬用表的R×1Ω檔。黑表筆接晶閘管的陽極(A),紅表筆接晶閘管的其中一極假設為陰極(K),另一極為控制極(G)。黑表筆不要離開陽極(A)同時觸擊控制極(G),若萬用表指針偏轉并站住,則判定晶閘管的假設極性陰極(K)和控制極(G)是正確的,且該晶閘管元件為好的晶閘管。若萬用表指針不偏轉,顛倒晶閘管的假設極性再測量。若萬用表指針偏轉并站住,則晶閘管的第二次假設極性為正確的,該晶閘管為好的晶閘管。否則為壞的晶閘管。,不同封裝形式的IGBT,其實主要就是為了照顧IGBT的散熱。
圖1單管,模塊的內部等效電路多個管芯并聯時,柵極已經加入柵極電阻,實際的等效電路如圖2所示。不同制造商的模塊,柵極電阻的阻值也不相同;不過,同一個模塊內部的柵極電阻,其阻值是相同的。圖2單管模塊內部的實際等效電路圖IGBT單管模塊通常稱為1in1模塊,前面的“1”表示內部包含一個IGBT管芯,后面的“1”表示同一個模塊塑殼之中。2.半橋模塊,2in1模塊半橋(Halfbridge)模塊也稱為2in1模塊,可直接構成半橋電路,也可以用2個半橋模塊構成全橋,3個半橋模塊也構成三相橋。因此,半橋模塊有時候也稱為橋臂(Phase-Leg)模塊。圖3是半橋模塊的內部等效。不同的制造商的接線端子名稱也有所不同,如C2E1可能會標識為E1C2,有的模塊只在等效電路圖上標識引腳編號等。圖3半橋模塊的內部等效電路半橋模塊的電流/電壓規格指的均是其中的每一個模塊單元。如1200V/400A的半橋模塊,表示其中的2個IGBT管芯的電流/電壓規格都是1200V/400A,即C1和E2之間可以耐受比較高2400V的瞬間直流電壓。不僅半橋模塊,所有模塊均是如此標注的。3.全橋模塊,4in1模塊全橋模塊的內部等效電路如圖4所示。圖4全橋模塊內部等效電路全橋(Fullbridge)模塊也稱為4in1模塊,用于直接構成全橋電路。4單元的全橋IGBT拓撲:以F4開頭。這個目前已經停產,大家不要選擇。廣東SKM300GB12T4IGBT模塊快速發貨
第三代IGBT開始,采用新的命名方式。命名的后綴為:T3,E3,P3。廣西功率半導體IGBT模塊庫存充足
盡量不要用手觸摸驅動端子部分,當必須要觸摸模塊端子時,要先將人體或衣服上的靜電用大電阻接地進行放電后,再觸摸;在用導電材料連接模塊驅動端子時,在配線未接好之前請先不要接上模塊;盡量在底板良好接地的情況下操作。在應用中有時雖然保證了柵極驅動電壓沒有超過柵極比較大額定電壓,但柵極連線的寄生電感和柵極與集電極間的電容耦合,也會產生使氧化層損壞的振蕩電壓。為此,通常采用雙絞線來傳送驅動信號,以減少寄生電感。在柵極連線中串聯小電阻也可以抑制振蕩電壓。此外,在柵極—發射極間開路時,若在集電極與發射極間加上電壓,則隨著集電極電位的變化,由于集電極有漏電流流過,柵極電位升高,集電極則有電流流過。這時,如果集電極與發射極間存在高電壓,則有可能使IGBT發熱及至損壞。在使用IGBT的場合,當柵極回路不正常或柵極回路損壞時(柵極處于開路狀態),若在主回路上加上電壓,則IGBT就會損壞,為防止此類故障,應在柵極與發射極之間串接一只10KΩ左右的電阻。在安裝或更換IGBT模塊時,應十分重視IGBT模塊與散熱片的接觸面狀態和擰緊程度。為了減少接觸熱阻,比較好在散熱器與IGBT模塊間涂抹導熱硅脂。一般散熱片底部安裝有散熱風扇。廣西功率半導體IGBT模塊庫存充足