顯然,有的積分球采用平面擋板封貼于2π開口處,這樣就嚴重破壞了球體的球面度,進而影響光線散射的均勻性。特別是當2π開口比較大時,這種影響就更加明顯。積分球的外觀確是個中空的球體,外壁由金屬構成,內壁涂有擴散率很高的物質,如:硫酸鋇(BaSO4)或詩貝倫(SPEKTRON);硫酸鋇涂層的積分球價格較便宜,等效透過率的基線平坦度 T入稍差,但反射率(P入)較高,可達到 P入≥0.92;而詩貝倫涂層的積分球剛好與硫酸鋇涂層的相反,它的基線平坦度 T入 更趨于平直,但反射率稍差,P入≥0.80。它的內徑可以做到從幾十毫米~幾百毫米不等;但內徑越大則價格也越貴。積分球的反射性能直接影響到光學測量的結果。弱光Helios標準光源均勻光源
積分球可用于測試光源的光通量,色溫,光效等參數。積分球的基本原理是光通過采樣口被積分球收集,在積分球內部經過多次反射后非常均勻地散射在積分球內部。使用積分球來測量光通量時,可使得測量結果更為可靠,積分球可降低并除去由光線地形狀、發散角度、及探測器上不同位置地響應度差異所造成地測量誤差。高等物理光學分類:(1)幾何光學,(2)物理光學,(3)量子光學,初等物理分類:(1)初中階段:幾何光學,(2)高中階段:幾何光學、物理光學,(3)說明:一般生活中提到的光學就是高中階段的分類標準。Spectra-PT亮度可調Helios標準光源均勻光源利用積分球,可以求解球體在受到外力時的應力分布,為工程設計提供參考。
由于積分球較常用于穩態條件下,隨著積分球涂層反射率的增加和開口端口面積比例的減小,產生穩態輻射度的反射次數越多。因此,積分球設計應嘗試優化這兩個參數,以獲得較佳的輻射通量空間積分。圖2是一個機器人成像系統的圖像,用于通過積分球參考端口映射空間均勻性。涂層,在為積分球選擇涂層時,必須考慮兩個因素:反射率和耐久性。例如,如果有足夠的光線,并且積分球將在可能導致積分球收集污垢或灰塵的環境中使用,則耐久性和可清洗的涂層是您的理想選擇。
這種輻射度交換一次又一次地發生,直到它在空間上整合。入射到整個積分球體表面的總通量的n次反射的交換可以用冪級數來建模,并簡化為一個簡單的輻射方程:式中Φ為入射到積分球內的光,As為積分球壁面積,p為積分球壁反射率,f為開口端口面積占比。簡化的輻射度方程可用于模擬光和LED測量應用的光學效率。這些應用包括用于激光表征的光學衰減,進入光纖或安裝在積分球體上的探測器表面的通量,用于圖像傳感器的光譜輻射度和用于非成像光學傳感傳感器的光譜輻照度,或積分球體應用所需的其他許多輻射和光度參數。積分球是一種內壁涂有白色漫反射材料的球體,用于光學實驗和照明設計。
燈具和LED光譜通量測量,積分球較傳統的應用是測量燈具的總光通量。這項技術起源于20世紀初,作為對比不同類型燈具輸出光通量較簡單快速的方法。這里,積分球光譜分析儀常用于測量LED、通用照明、工程照明、便攜式燈具產品等的電學和光度性能。這些應用積分球直徑可以小至5厘米,大至3米或更大(例如圖4)。采用積分球可以更有效地測量任何尺寸或形狀的傳統和固態光源的總光譜通量和顏色。積分球配合光譜儀,可測試重要的光譜參數例如光譜通量、色度、相關色溫、CRI、TM-30、峰值波長和主波長等等(圖4b)。通過積分球,可以探究地球表面重力場的分布,為地理學研究提供支持。真空Helios標準光源測試方法
球坐標系下,積分球體積元素的推導,展現了數學的嚴謹與美妙。弱光Helios標準光源均勻光源
積分球是一個內壁涂有白色漫反射材料的空腔球體,又稱光度球,光通球等。球內壁上涂以理想的漫反射材料,也就是漫反射系數接近于1的材料。常用的材料是PTFE或硫酸鋇,將它和膠質粘合劑混合均勻后,噴涂在內壁上。光線由輸入孔入射后,光線在此球內部被均勻的反射及漫射,因此輸出孔所得到的光線為相當均勻的漫射光束。而且入射光的入射角度、空間分布、及極化皆不會對輸出的光束強度及均勻度造成影響。也因為光線經過積分球內部的積分后才射出,因此積分球亦可當作一光強度衰減器。其輸出強度與輸入強度比約為:光輸出孔的面積/積分球內部的表面積。弱光Helios標準光源均勻光源